ICMRBS2012/500 relax and its applications for the study of internal and domain mobility in biomolecules

E. D'auvergne and C. Griesinger MPI for Biophysical Chemistry, Am Fassberg 11, 37077 Goettingen, Germany edau@nmr.mpibpc.mpg.de

The open source software relax (http://www.nmr-relax.com) is designed for molecular dynamics studies through the analysis of experimental NMR data. It is widely used for the Lipari-Szabo model-free analysis of relaxation data, implementing a new protocol which reverses the logic of previous studies and solves many of the problems faced in the past. The program is also used for exponential curve-fitting for determining the R_1 and R_2 rates, the steady-state NOE calculation, consistency testing of relaxation data, and reduced spectral density mapping. The current status of the project will be presented including:

- The new version of the graphical user interface (GUI), exposing more of the power and flexibility available within the prompt and scripting interfaces.
- The multi-processor framework used for speeding up model-free calculations by using the MPI protocol to run on multi-threaded or multi-processor machines or on clusters.
- The tight integration of relax and the Biological Magnetic Resonance Data Bank (BMRB). Data mining will be used to show the utility of model-free data deposition for understanding protein motions. The integration allows for very easy BMRB deposition of previously published data from relax, Modelfree4, Dasha, and Tensor2.
- Its extendibility to other NMR fields, for example the chemistry question of the determination of the absolute stereochemistry of flexible molecules.
- The study of domain motions using the N-state or ensemble model. The analysis of the conformational space of the sugar lactose will be used as a demonstration, applicable to larger molecules, whereby the inter-sugar (or inter-domain) motion was explored using RDC and PCS data.
- The development of the new frame order analysis of domain motions, using calmodulin bound to a target peptide as an example. This combines a new theory consisting of the 3D, rank-4 frame order tensor, used to describe how Brownian motion modules a rank-2 NMR interaction, together with modelling using isotropic and pseudo-elliptic cones and torsion angle restrictions.

Number of words in abstract: 318 Keywords: Technical area: Dynamics Special session: Not specified Presentation: No preference Special equipment: No special equipment