Bibliography

[Abragam, 1961]Abragam61 Abragam, A. (1961).
The Principles of Nuclear Magnetism.
Clarendon Press, Oxford.
[Akaike, 1973]Akaike73 Akaike, H. (1973).
Information theory and an extension of the maximum likelihood principle.
In: Petrov, B. N. and Csaki, F. (eds.): Proceedings of the Second International Symposium on Information Theory. Budapest, pages 267-281, Akademia Kiado.
[Barbato et al., 1992]Barbato92 Barbato, G., Ikura, M., Kay, L. E., Pastor, R. W., and Bax, A. (1992).
Backbone dynamics of calmodulin studied by 15N relaxation using inverse detected two-dimensional NMR spectroscopy: the central helix is flexible.
Biochemistry, 31(23), 5269-5278.
(http://dx.doi.org/10.1021/bi00138a00510.1021/bi00138a005).
[Bieri et al., 2011]Bieri11 Bieri, M., d’Auvergne, E., and Gooley, P. (2011).
relaxGUI: a new software for fast and simple NMR relaxation data analysis and calculation of ps-ns and $ \mu$s motion of proteins.
J. Biomol. NMR, 50, 147-155.
(http://dx.doi.org/10.1007/s10858-011-9509-110.1007/s10858-011-9509-1).
[Bieri and Gooley, 2011]BieriGooley11 Bieri, M. and Gooley, P. R. (2011).
Automated NMR relaxation dispersion data analysis using NESSY.
BMC Bioinformatics, 12, 421.
(http://dx.doi.org/10.1186/1471-2105-12-42110.1186/1471-2105-12-421).
[Bloch, 1946]Bloch46 Bloch, F. (1946).
Nuclear induction.
Phys. Rev., 70(7-8), 460-474.
(http://dx.doi.org/10.1103/PhysRev.70.46010.1103/PhysRev.70.460).
[Bloembergen et al., 1948]Bloembergen48 Bloembergen, N., Purcell, E. M., and Pound, R. V. (1948).
Relaxation effects in nuclear magnetic resonance absorption.
Phys. Rev., 73(7), 679-712.
(http://dx.doi.org/10.1103/PhysRev.73.67910.1103/PhysRev.73.679).
[Broyden, 1970]Broyden70 Broyden, C. G. (1970).
The convergence of a class of double-rank minimization algorithms 1. General considerations.
J. Inst. Maths. Applics., 6(1), 76-90.
(http://dx.doi.org/10.1093/imamat/6.1.7610.1093/imamat/6.1.76).
[Brüschweiler et al., 1995]Bruschweiler95 Brüschweiler, R., Liao, X., and Wright, P. E. (1995).
Long-range motional restrictions in a multidomain zinc-finger protein from anisotropic tumbling.
Science, 268(5212), 886-889.
(http://dx.doi.org/10.1126/science.775437510.1126/science.7754375).
[Butterwick et al., 2004]Butterwick04 Butterwick, J. A., Loria, P. J., Astrof, N. S., Kroenke, C. D., Cole, R., Rance, M., and Palmer, 3rd, A. G. (2004).
Multiple time scale backbone dynamics of homologous thermophilic and mesophilic ribonuclease HI enzymes.
J. Mol. Biol., 339(4), 855-871.
(http://dx.doi.org/10.1016/j.jmb.2004.03.05510.1016/j.jmb.2004.03.055).
[Carver and Richards, 1972]CarverRichards72 Carver, J. and Richards, R. (1972).
General 2-site solution for chemical exchange produced dependence of T2 upon Carr-Purcell pulse separation.
J. Magn. Reson., 6(1), 89-105.
(http://dx.doi.org/10.1016/0022-2364(72)90090-X10.1016/0022-2364(72)90090-X).
[Chen et al., 2004]Chen04 Chen, J., Brooks, 3rd, C. L., and Wright, P. E. (2004).
Model-free analysis of protein dynamics: assessment of accuracy and model selection protocols based on molecular dynamics simulation.
J. Biomol. NMR, 29(3), 243-257.
(http://dx.doi.org/10.1023/b:jnmr.0000032504.70912.5810.1023/b:jnmr.0000032504.70912.58).
[Clore et al., 1990]Clore90a Clore, G. M., Szabo, A., Bax, A., Kay, L. E., Driscoll, P. C., and Gronenborn, A. M. (1990).
Deviations from the simple 2-parameter model-free approach to the interpretation of N-15 nuclear magnetic-relaxation of proteins.
J. Am. Chem. Soc., 112(12), 4989-4991.
(http://dx.doi.org/10.1021/ja00168a07010.1021/ja00168a070).
[d'Auvergne, 2006]dAuvergne06 d'Auvergne, E. J. (2006).
Protein dynamics: a study of the model-free analysis of NMR relaxation data.
PhD thesis, Biochemistry and Molecular Biology, University of Melbourne. http://eprints.infodiv.unimelb.edu.au/archive/00002799/.
(http://dx.doi.org/10187/228110187/2281).
[d'Auvergne and Gooley, 2003]dAuvergneGooley03 d'Auvergne, E. J. and Gooley, P. R. (2003).
The use of model selection in the model-free analysis of protein dynamics.
J. Biomol. NMR, 25(1), 25-39.
(http://dx.doi.org/10.1023/a:102190200611410.1023/a:1021902006114).
[d'Auvergne and Gooley, 2006]dAuvergneGooley06 d'Auvergne, E. J. and Gooley, P. R. (2006).
Model-free model elimination: A new step in the model-free dynamic analysis of NMR relaxation data.
J. Biomol. NMR, 35(2), 117-135.
(http://dx.doi.org/10.1007/s10858-006-9007-z10.1007/s10858-006-9007-z).
[d'Auvergne and Gooley, 2007]dAuvergneGooley07 d'Auvergne, E. J. and Gooley, P. R. (2007).
Set theory formulation of the model-free problem and the diffusion seeded model-free paradigm.
Mol. BioSyst., 3(7), 483-494.
(http://dx.doi.org/10.1039/b702202f10.1039/b702202f).
[d'Auvergne and Gooley, 2008a]dAuvergneGooley08ab d'Auvergne, E. J. and Gooley, P. R. (2008a).
Optimisation of NMR dynamic models.
J. Biomol. NMR, 40(2), 107-133.
[d'Auvergne and Gooley, 2008b]dAuvergneGooley08a d'Auvergne, E. J. and Gooley, P. R. (2008b).
Optimisation of NMR dynamic models I. Minimisation algorithms and their performance within the model-free and Brownian rotational diffusion spaces.
J. Biomol. NMR, 40(2), 107-119.
(http://dx.doi.org/10.1007/s10858-007-9214-210.1007/s10858-007-9214-2).
[d'Auvergne and Gooley, 2008c]dAuvergneGooley08b d'Auvergne, E. J. and Gooley, P. R. (2008c).
Optimisation of NMR dynamic models II. A new methodology for the dual optimisation of the model-free parameters and the Brownian rotational diffusion tensor.
J. Biomol. NMR, 40(2), 121-133.
(http://dx.doi.org/10.1007/s10858-007-9213-310.1007/s10858-007-9213-3).
[Davis et al., 1994]Davis94 Davis, D., Perlman, M., and London, R. (1994).
Direct measurements of the dissociation-rate constant for inhibitor-enzyme complexes via the T1rho and T2 (CPMG) methods.
J. Magn. Reson., 104(3), 266-275.
(http://dx.doi.org/10.1006/jmrb.1994.108410.1006/jmrb.1994.1084).
[Einstein, 1905]Einstein05 Einstein, A. (1905).
Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen (The motion of elements suspended in static liquids as claimed in the molecular kinetic theory of heat).
Ann. Physik, 17(8), 549-560.
(http://dx.doi.org/10.1002/andp.1905322080610.1002/andp.19053220806).
[Erdelyi et al., 2011]Erdelyi11 Erdelyi, M., d'Auvergne, E., Navarro-Vazquez, A., Leonov, A., and Griesinger, C. (2011).
Dynamics of the glycosidic bond: Conformational space of lactose.
Chem. Eur. J., 17(34), 9368-9376.
(http://dx.doi.org/10.1002/chem.20110085410.1002/chem.201100854).
[Farrow et al., 1995]Farrow95 Farrow, N. A., Zhang, O. W., Szabo, A., Torchia, D. A., and Kay, L. E. (1995).
Spectral density-function mapping using N-15 relaxation data exclusively.
J. Biomol. NMR, 6(2), 153-162.
(http://dx.doi.org/10.1007/bf0021177910.1007/bf00211779).
[Favro, 1960]Favro60 Favro, L. D. (1960).
Theory of the rotational brownian motion of a free rigid body.
Phys. Rev., 119(1), 53-62.
(http://dx.doi.org/10.1103/PhysRev.119.5310.1103/PhysRev.119.53).
[Fletcher, 1970]Fletcher70 Fletcher, R. (1970).
A new approach to variable metric algorithms.
Comp. J., 13(3), 317-322.
(http://dx.doi.org/10.1093/comjnl/13.3.31710.1093/comjnl/13.3.317).
[Fletcher and Reeves, 1964]FletcherReeves64 Fletcher, R. and Reeves, C. M. (1964).
Function minimization by conjugate gradients.
Comp. J., 7(2), 149-154.
(http://dx.doi.org/10.1093/comjnl/7.2.14910.1093/comjnl/7.2.149).
[Fushman et al., 1997]Fushman97 Fushman, D., Cahill, S., and Cowburn, D. (1997).
The main-chain dynamics of the dynamin pleckstrin homology (PH) domain in solution: analysis of 15N relaxation with monomer/dimer equilibration.
J. Mol. Biol., 266(1), 173-194.
(http://dx.doi.org/10.1006/jmbi.1996.077110.1006/jmbi.1996.0771).
[Fushman et al., 1998]Fushman98 Fushman, D., Tjandra, N., and Cowburn, D. (1998).
Direct measurement of 15N chemical shift anisotropy in solution.
J. Am. Chem. Soc., 120(42), 10947-10952.
(http://dx.doi.org/10.1021/ja981686m10.1021/ja981686m).
[Fushman et al., 1999]Fushman99 Fushman, D., Tjandra, N., and Cowburn, D. (1999).
An approach to direct determination of protein dynamics from 15N NMR relaxation at multiple fields, independent of variable 15N chemical shift anisotropy and chemical exchange contributions.
J. Am. Chem. Soc., 121(37), 8577-8582.
(http://dx.doi.org/10.1021/ja990499110.1021/ja9904991).
[Gill et al., 1981]GMW81 Gill, P. E., Murray, W., and Wright, M. H. (1981).
Practical Optimization.
Academic Press.
[Goldfarb, 1970]Goldfarb70 Goldfarb, D. (1970).
A family of variable-metric methods derived by variational means.
Math. Comp., 24(109), 23-26.
(http://dx.doi.org/10.1090/s0025-5718-1970-0258249-610.1090/s0025-5718-1970-0258249-6).
[Hansen et al., 2008]Hansen08 Hansen, D. F., Vallurupalli, P., Lundstrom, P., Neudecker, P., and Kay, L. E. (2008).
Probing chemical shifts of invisible states of proteins with relaxation dispersion NMR spectroscopy: how well can we do?
J. Am. Chem. Soc., 130(8), 2667-2675.
(http://dx.doi.org/10.1021/ja078337p10.1021/ja078337p).
[Hestenes and Stiefel, 1952]HestenesStiefel52 Hestenes, M. R. and Stiefel, E. (1952).
Methods of conjugate gradients for solving linear systems.
J. Res. Natn. Bur. Stand., 49(6), 409-436.
(http://dx.doi.org/10.6028/jres.049.04410.6028/jres.049.044).
[Horne et al., 2007]Horne07 Horne, J., d'Auvergne, E., Coles, M., Velkov, T., Chin, Y., Charman, W., Prankerd, R., Gooley, P., and Scanlon, M. (2007).
Probing the flexibility of the DsbA oxidoreductase from Vibrio cholerae-a 15N - 1H heteronuclear NMR relaxation analysis of oxidized and reduced forms of DsbA.
J. Mol. Biol., 371(3), 703-716.
(http://dx.doi.org/10.1016/j.jmb.2007.05.06710.1016/j.jmb.2007.05.067).
[Hurvich and Tsai, 1989]HurvichTsai89 Hurvich, C. M. and Tsai, C. L. (1989).
Regression and time-series model selection in small samples.
Biometrika, 76(2), 297-307.
(http://dx.doi.org/10.1093/biomet/76.2.29710.1093/biomet/76.2.297).
[Ishima and Torchia, 1999]IshimaTorchia99 Ishima, R. and Torchia, D. (1999).
Estimating the time scale of chemical exchange of proteins from measurements of transverse relaxation rates in solution.
J. Biomol. NMR, 14(4), 369-372.
(http://dx.doi.org/10.1023/A:100832402540610.1023/A:1008324025406).
[Ishima and Torchia, 2005]IshimaTorchia05 Ishima, R. and Torchia, D. A. (2005).
Error estimation and global fitting in transverse-relaxation dispersion experiments to determine chemical-exchange parameters.
J. Biomol. NMR, 32(1), 41-54.
(http://dx.doi.org/10.1007/s10858-005-3593-z10.1007/s10858-005-3593-z).
[Kay et al., 1989]Kay89 Kay, L. E., Torchia, D. A., and Bax, A. (1989).
Backbone dynamics of proteins as studied by 15N inverse detected heteronuclear NMR spectroscopy: application to staphylococcal nuclease.
Biochemistry, 28(23), 8972-8979.
(http://dx.doi.org/10.1021/bi00449a00310.1021/bi00449a003).
[Kleckner and Foster, 2012]KlecknerFoster12 Kleckner, I. R. and Foster, M. P. (2012).
GUARDD: user-friendly MATLAB software for rigorous analysis of CPMG RD NMR data.
J. Biomol. NMR, 52(1), 11-22.
(http://dx.doi.org/10.1007/s10858-011-9589-y10.1007/s10858-011-9589-y).
[Korzhnev et al., 2001]Korzhnev01 Korzhnev, D. M., Billeter, M., Arseniev, A. S., and Orekhov, V. Y. (2001).
NMR studies of Brownian tumbling and internal motions in proteins.
Prog. NMR Spectrosc., 38(3), 197-266.
(http://dx.doi.org/10.1016/s0079-6565(00)00028-510.1016/s0079-6565(00)00028-5).
[Korzhnev et al., 2004a]Korzhnev04a Korzhnev, D. M., Kloiber, K., Kanelis, V., Tugarinov, V., and Kay, L. E. (2004a).
Probing slow dynamics in high molecular weight proteins by methyl-TROSY NMR spectroscopy: application to a 723-residue enzyme.
J. Am. Chem. Soc., 126(12), 3964-3973.
(http://dx.doi.org/10.1021/ja039587i10.1021/ja039587i).
[Korzhnev et al., 2004b]Korzhnev04b Korzhnev, D. M., Kloiber, K., and Kay, L. E. (2004b).
Multiple-quantum relaxation dispersion NMR spectroscopy probing millisecond time-scale dynamics in proteins: theory and application.
J. Am. Chem. Soc., 126(23), 7320-7329.
(http://dx.doi.org/10.1021/ja049968b10.1021/ja049968b).
[Korzhnev et al., 2005a]Korzhnev05b Korzhnev, D. M., Neudecker, P., Mittermaier, A., Orekhov, V. Y., and Kay, L. E. (2005a).
Multiple-site exchange in proteins studied with a suite of six NMR relaxation dispersion experiments: an application to the folding of a Fyn SH3 domain mutant.
J. Am. Chem. Soc., 127(44), 15602-15611.
(http://dx.doi.org/10.1021/ja054550e10.1021/ja054550e).
[Korzhnev et al., 2005b]Korzhnev05a Korzhnev, D. M., Orekhov, V. Y., and Kay, L. E. (2005b).
Off-resonance R(1rho) NMR studies of exchange dynamics in proteins with low spin-lock fields: an application to a Fyn SH3 domain.
J. Am. Chem. Soc., 127(2), 713-721.
(http://dx.doi.org/10.1021/ja044685510.1021/ja0446855).
[Kullback and Leibler, 1951]KullbackLeibler51 Kullback, S. and Leibler, R. A. (1951).
On information and sufficiency.
Ann. Math. Stat., 22(1), 79-86.
(http://dx.doi.org/10.1214/aoms/117772969410.1214/aoms/1177729694).
[Lee et al., 1997]Lee97 Lee, L. K., Rance, M., Chazin, W. J., and Palmer, A. G. (1997).
Rotational diffusion anisotropy of proteins from simultaneous analysis of N-15 and C-13(alpha) nuclear spin relaxation.
J. Biomol. NMR, 9(3), 287-298.
(http://dx.doi.org/10.1023/a:101863100958310.1023/a:1018631009583).
[Lefevre et al., 1996]Lefevre96 Lefevre, J., Dayie, K., Peng, J., and Wagner, G. (1996).
Internal mobility in the partially folded DNA binding and dimerization domains of GAL4: NMR analysis of the N-H spectral density functions.
Biochemistry, 35(8), 2674-2686.
(http://dx.doi.org/10.1021/bi952680210.1021/bi9526802).
[Levenberg, 1944]Levenberg44 Levenberg, K. (1944).
A method for the solution of certain non-linear problems in least squares.
Quarterly of Applied Mathematics, 2, 164-168.
[Linhart and Zucchini, 1986]LinhartZucchini86 Linhart, H. and Zucchini, W. (1986).
Model Selection.
Wiley Series in Probability and Mathematical Statistics. John Wiley & Sons, Inc., New York, NY, USA.
[Lipari and Szabo, 1982a]LipariSzabo82a Lipari, G. and Szabo, A. (1982a).
Model-free approach to the interpretation of nuclear magnetic-resonance relaxation in macromolecules I. Theory and range of validity.
J. Am. Chem. Soc., 104(17), 4546-4559.
(http://dx.doi.org/10.1021/ja00381a00910.1021/ja00381a009).
[Lipari and Szabo, 1982b]LipariSzabo82b Lipari, G. and Szabo, A. (1982b).
Model-free approach to the interpretation of nuclear magnetic-resonance relaxation in macromolecules II. Analysis of experimental results.
J. Am. Chem. Soc., 104(17), 4559-4570.
(http://dx.doi.org/10.1021/ja00381a01010.1021/ja00381a010).
[Luz and Meiboom, 1963]LuzMeiboom63 Luz, Z. and Meiboom, S. (1963).
Nuclear magnetic resonance study of protolysis of trimethylammonium ion in aqueous solution - order of reaction with respect to solvent.
J. Chem. Phys., 39(2), 366-370.
(http://dx.doi.org/10.1063/1.173425410.1063/1.1734254).
[Mandel et al., 1995]Mandel95 Mandel, A. M., Akke, M., and Palmer, 3rd, A. G. (1995).
Backbone dynamics of escherichia coli ribonuclease HI: correlations with structure and function in an active enzyme.
J. Mol. Biol., 246(1), 144-163.
(http://dx.doi.org/10.1006/jmbi.1994.007310.1006/jmbi.1994.0073).
[Marquardt, 1963]Marquardt63 Marquardt, D. W. (1963).
An algorithm for least squares estimation of non-linear parameters.
SIAM J., 11, 431-441.
(http://dx.doi.org/10.1137/011103010.1137/0111030).
[Mazur et al., 2013]Mazur13 Mazur, A., Hammesfahr, B., Griesinger, C., Lee, D., and Kollmar, M. (2013).
ShereKhan-calculating exchange parameters in relaxation dispersion data from CPMG experiments.
29(14), 1819-1820.
(http://dx.doi.org/10.1093/bioinformatics/btt28610.1093/bioinformatics/btt286).
[McConnell, 1958]McConnell58 McConnell, H. (1958).
Reaction rates by nuclear magnetic resonance.
J. Chem. Phys., 28(3), 430-431.
(http://dx.doi.org/10.1063/1.174415210.1063/1.1744152).
[Meiboom, 1961]Meiboom61 Meiboom, S. (1961).
Nuclear magnetic resonance study of proton transfer in water.
J. Chem. Phys., 34(2), 375-388.
(http://dx.doi.org/10.1063/1.170096010.1063/1.1700960).
[Miloushev and Palmer, 2005]MiloushevPalmer05 Miloushev, V. Z. and Palmer, 3rd, A. G. (2005).
R(1rho) relaxation for two-site chemical exchange: general approximations and some exact solutions.
J. Magn. Reson., 177(2), 221-227.
(http://dx.doi.org/10.1016/j.jmr.2005.07.02310.1016/j.jmr.2005.07.023).
[Moré and Thuente, 1994]MoreThuente94 Moré, J. J. and Thuente, D. J. (1994).
Line search algorithms with guaranteed sufficient decrease.
ACM Trans. Maths. Softw., 20(3), 286-307.
(http://dx.doi.org/10.1145/192115.19213210.1145/192115.192132).
[Morin, 2011]Morin11 Morin, S. (2011).
A practical guide to protein dynamics from 15N spin relaxation in solution.
Prog. NMR Spectrosc., 59(3), 245-262.
(http://dx.doi.org/10.1016/j.pnmrs.2010.12.00310.1016/j.pnmrs.2010.12.003).
[Morin and Gagné, 2009a]MorinGagne09a Morin, S. and Gagné, S. (2009a).
Simple tests for the validation of multiple field spin relaxation data.
J. Biomol. NMR, 45, 361-372.
(http://dx.doi.org/10.1007/s10858-009-9381-410.1007/s10858-009-9381-4).
[Morin and Gagné, 2009b]MorinGagne09b Morin, S. and Gagné, S. M. (2009b).
NMR dynamics of PSE-4 $ \beta$-lactamase: An interplay of ps-ns order and $ \mu$s-ms motions in the active site.
Biophys. J., 96(11), 4681-4691.
(http://dx.doi.org/10.1016/j.bpj.2009.02.06810.1016/j.bpj.2009.02.068).
[Morin et al., 2014]Morin14 Morin, S., Linnet, T. E., Lescanne, M., Schanda, P., Thompson, G. S., Tollinger, M., Teilum, K., Gagné, S., Marion, D., Griesinger, C., Blackledge, M., and d'Auvergne, E. J. (2014).
relax: the analysis of biomolecular kinetics using NMR relaxation dispersion data.
Submitted.
[Nocedal and Wright, 1999]NocedalWright99 Nocedal, J. and Wright, S. J. (1999).
Numerical Optimization.
Springer Series in Operations Research. Springer-Verlag, New York.
[O'Connell et al., 2009]OConnell09 O'Connell, N. E., Grey, M. J., Tang, Y., Kosuri, P., Miloushev, V. Z., Raleigh, D. P., and Palmer, 3rd, A. G. (2009).
Partially folded equilibrium intermediate of the villin headpiece HP67 defined by 13C relaxation dispersion.
J. Biomol. NMR, 45(1-2), 85-98.
(http://dx.doi.org/10.1007/s10858-009-9340-010.1007/s10858-009-9340-0).
[Orekhov et al., 1999a]Orekhov99b Orekhov, V. Y., Korzhnev, D. M., Diercks, T., Kessler, H., and Arseniev, A. S. (1999a).
H-1-N-15 NMR dynamic study of an isolated alpha-helical peptide (1-36)bacteriorhodopsin reveals the equilibrium helix-coil transitions.
J. Biomol. NMR, 14(4), 345-356.
(http://dx.doi.org/10.1023/a:100835680907110.1023/a:1008356809071).
[Orekhov et al., 1999b]Orekhov99a Orekhov, V. Y., Korzhnev, D. M., Pervushin, K. V., Hoffmann, E., and Arseniev, A. S. (1999b).
Sampling of protein dynamics in nanosecond time scale by 15N NMR relaxation and self-diffusion measurements.
J. Biomol. Struct. Dyn., 17(1), 157-174.
(http://dx.doi.org/10.1080/07391102.1999.1050834810.1080/07391102.1999.10508348).
[Orekhov et al., 1995]Orekhov95b Orekhov, V. Y., Pervushin, K. V., Korzhnev, D. M., and Arseniev, A. S. (1995).
Backbone dynamics of (1-71)bacterioopsin and (1-36)bacterioopsin studied by 2-dimensional H-1-N-15 NMR-spectroscopy.
J. Biomol. NMR, 6(2), 113-122.
(http://dx.doi.org/10.1007/BF0021177410.1007/BF00211774).
[Palmer and Massi, 2006]PalmerMassi06 Palmer, 3rd, A. G. and Massi, F. (2006).
Characterization of the dynamics of biomacromolecules using rotating-frame spin relaxation NMR spectroscopy.
Chem. Rev., 106(5), 1700-1719.
(http://dx.doi.org/10.1021/cr040428710.1021/cr0404287).
[Perrin, 1934]Perrin34 Perrin, F. (1934).
Mouvement Brownien d'un ellipsoïde (I). Dispersion diéletrique pour des molécules ellipsoïdales.
J. Phys. Radium, 5, 497-511.
(http://dx.doi.org/10.1051/jphysrad:0193400501004970010.1051/jphysrad:01934005010049700).
[Perrin, 1936]Perrin36 Perrin, F. (1936).
Mouvement Brownien d'un ellipsoïde (II). Rotation libre et dépolarisation des fluorescences. Translation et diffusion de molécules ellipsoïdales.
J. Phys. Radium, 7, 1-11.
(http://dx.doi.org/10.1051/jphysrad:0193600701010010.1051/jphysrad:01936007010100).
[Polak and Ribière, 1969]PolakRibiere69 Polak, E. and Ribière, G. (1969).
Note sur la convergence de méthodes de directions conjuguées.
Revue Française d'Informatique et de Recherche Opérationnelle, 16, 35-43.
[Schurr et al., 1994]Schurr94 Schurr, J. M., Babcock, H. P., and Fujimoto, B. S. (1994).
A test of the model-free formulas. Effects of anisotropic rotational diffusion and dimerization.
J. Magn. Reson. B, 105(3), 211-224.
(http://dx.doi.org/10.1006/jmrb.1994.112710.1006/jmrb.1994.1127).
[Schwarz, 1978]Schwarz78 Schwarz, G. (1978).
Estimating dimension of a model.
Ann. Stat., 6(2), 461-464.
(http://dx.doi.org/10.1214/aos/117634413610.1214/aos/1176344136).
[Shanno, 1970]Shanno70 Shanno, D. F. (1970).
Conditioning of quasi-Newton methods for function minimization.
Math. Comp., 24(111), 647-656.
(http://dx.doi.org/10.1090/s0025-5718-1970-0274029-x10.1090/s0025-5718-1970-0274029-x).
[Steihaug, 1983]Steihaug83 Steihaug, T. (1983).
The conjugate gradient method and trust regions in large scale optimization.
SIAM J. Numer. Anal., 20(3), 626-637.
(http://dx.doi.org/10.1137/072004210.1137/0720042).
[Sugase et al., 2013]Sugase13 Sugase, K., Konuma, T., Lansing, J. C., and Wright, P. E. (2013).
Fast and accurate fitting of relaxation dispersion data using the flexible software package GLOVE.
J. Biomol. NMR, 56(3), 275-283.
(http://dx.doi.org/10.1007/s10858-013-9747-510.1007/s10858-013-9747-5).
[Sun et al., 2011]Sun11 Sun, H., d'Auvergne, E. J., Reinscheid, U. M., Dias, L. C., Andrade, C. K. Z., Rocha, R. O., and Griesinger, C. (2011).
Bijvoet in solution reveals unexpected stereoselectivity in a michael addition.
Chem. Eur. J., 17(6), 1811-1817.
(http://dx.doi.org/10.1002/chem.20100252010.1002/chem.201002520).
[Tjandra et al., 1996]Tjandra96 Tjandra, N., Wingfield, P., Stahl, S., and Bax, A. (1996).
Anisotropic rotational diffusion of perdeuterated HIV protease from N-15 NMR relaxation measurements at two magnetic.
J. Biomol. NMR, 8(3), 273-284.
(http://dx.doi.org/10.1007/bf0041032610.1007/bf00410326).
[Tollinger et al., 2001]Tollinger01 Tollinger, M., Skrynnikov, N. R., Mulder, F. A. A., Forman-Kay, J. D., and Kay, L. E. (2001).
Slow dynamics in folded and unfolded states of an sh3 domain.
J. Am. Chem. Soc., 123(46), 11341-11352.
(http://dx.doi.org/10.1021/ja011300z10.1021/ja011300z).
[Trott et al., 2003]Trott03 Trott, O., Abergel, D., and Palmer, A. (2003).
An average-magnetization analysis of R-1 rho relaxation outside of the fast exchange.
Mol. Phys., 101(6), 753-763.
(http://dx.doi.org/10.1080/002689702100005482610.1080/0026897021000054826).
[Trott and Palmer, 2002]TrottPalmer02 Trott, O. and Palmer, 3rd, A. G. (2002).
R1rho relaxation outside of the fast-exchange limit.
J. Magn. Reson., 154(1), 157-160.
(http://dx.doi.org/10.1006/jmre.2001.246610.1006/jmre.2001.2466).
[Trott and Palmer, 2004]TrottPalmer04 Trott, O. and Palmer, 3rd, A. G. (2004).
Theoretical study of R(1rho) rotating-frame and R2 free-precession relaxation in the presence of n-site chemical exchange.
J. Magn. Reson., 170(1), 104-112.
(http://dx.doi.org/10.1016/j.jmr.2004.06.00510.1016/j.jmr.2004.06.005).
[Viles et al., 2001]Viles01 Viles, J., Duggan, B., Zaborowski, E., Schwarzinger, S., Huntley, J., Kroon, G., Dyson, H., and Wright, P. (2001).
Potential bias in NMR relaxation data introduced by peak intensity analysis and curve fitting methods.
J. Biomol. NMR, 21, 1-9.
(http://dx.doi.org/10.1023/A:101196671882610.1023/A:1011966718826).
[Woessner, 1962]Woessner62 Woessner, D. E. (1962).
Nuclear spin relaxation in ellipsoids undergoing rotational brownian motion.
J. Chem. Phys., 37(3), 647-654.
(http://dx.doi.org/10.1063/1.170139010.1063/1.1701390).
[Zhuravleva et al., 2004]Zhuravleva04 Zhuravleva, A. V., Korzhnev, D. M., Kupce, E., Arseniev, A. S., Billeter, M., and Orekhov, V. Y. (2004).
Gated electron transfers and electron pathways in azurin: a NMR dynamic study at multiple fields and temperatures.
J. Mol. Biol., 342(5), 1599-1611.
(http://dx.doi.org/10.1016/j.jmb.2004.08.00110.1016/j.jmb.2004.08.001).
[Zucchini, 2000]Zucchini00 Zucchini, W. (2000).
An introduction to model selection.
J. Math. Psychol., 44(1), 41-61.
(http://dx.doi.org/10.1006/jmps.1999.127610.1006/jmps.1999.1276).

The relax user manual (PDF), created 2014-03-17.