For the surface normalisation factor of the pseudo-elliptic cone, the integral from equation 16.51b on page is
(16.41) |
When combined with the pseudo-ellipse of equation 16.39, this becomes the intractable integral
(16.42) |
Instead the cosine series expansion will be used
cosθmax | = 1 - |
(16.43) |
= |
(16.44) |
Integrating each element of the sum over the φ parameter and using the assumption that θx, θy≥ 0 gives
... | (16.45) |
Therefore a new two dimension trigonometric function, the pseudo-elliptic cosine, can be defined as
Let
a = θx2, | |
b = θy2, | (16.47) |
then the first of the fn(θx, θy) equations are
f0 = 1, | |
f1 = 2a + 2b, | |
f2 = 6a2 +4ab + 6b2, | |
f3 = 20a3 +12a2b + 12ab2 +20b3, | |
f4 = 70a4 +40a3b + 36a2b2 +40ab3 +70b4, | |
f5 = 252a5 +140a4b + 120a3b2 +120a2b3 +140ab4 +252b5, | |
f6 = 924a6 +504a5b + 420a4b2 +400a3b3 +420a2b4 +504ab5 +924b6, | |
f7 = 3432a7 +1848a6b + 1512a5b2 +1400a4b3 +1400a3b4 +1512a2b5 +1848ab6 +3432b7, | |
... | (16.48) |
Or
f0 = 1, | |
f1 = 2(a + b), | |
f2 = 6(a2 + b2) + 4ab, | |
f3 = 20(a3 + b3) + 12(a2b + ab2), | |
f4 = 70(a4 + b4) + 40(a3b + ab3) + 36a2b2, | |
f5 = 252(a5 + b5) + 140(a4b + ab4) + 120(a3b2 + a2b3), | |
f6 = 924(a6 + b6) + 504(a5b + ab5) + 420(a4b2 + a2b4) + 400a3b3, | |
f7 = 3432(a7 + b7) + 1848(a6b + ab6) + 1512(a5b2 + a2b5) + 1400(a4b3 + a3b4), | |
f8 = 12870(a8 + b8) + 6864(a7b + ab7) + 5544(a6b2 + a2b6) + 5040(a5b3 + a3b5) + 4900a4b4, | |
f9 = 48620(a9 + b9) + 25740(a8b + ab8) + 20592(a7b2 + a2b7) + 18480(a6b3 + a3b6) + 17640(a5b4 + a4b5), | |
f10 = 184756(a10 + b10) + 97240(a9b + ab9) + 77220(a8b2 + a2b8) + 68640(a7b3 + a3b7) + 64680(a6b4 + a4b6) + 63504a5b5, | |
... | (16.49) |
This series expansion up to n = 10 is sufficient for writing a fast and accurate pec function implementation in computer code. The numerical representation of this function is shown in figure 16.14.
|
The relax user manual (PDF), created 2024-06-08.