The N-state model analysis scripts

For determining the alignment tensor and paramagnetic Ln3+ position from the RDC and PCS data, the N-state model or ensemble analysis should be used. The script is:

# Python imports.
from numpy import array

# relax imports.
from lib.physical_constants import NH_BOND_LENGTH_RDC


# Create a data pipe for all the data.
pipe.create('CaM N-dom', 'N-state')

# Load the CaM structure.
structure.read_pdb('2BE6_core_II_III.pdb', dir='../../../../structures/2BE6_superimpose/Ndom_II_III', set_mol_name=['CaM_A', 'IQ_A', 'Metals_A', 'CaM_B', 'IQ_B', 'Metals_B', 'CaM_C', 'IQ_C', 'Metals_C'])

# Load the spins.
structure.load_spins('@N', from_mols=['CaM_A', 'CaM_B', 'CaM_C'], mol_name_target='CaM', ave_pos=False)
structure.load_spins('@H', from_mols=['CaM_A', 'CaM_B', 'CaM_C'], mol_name_target='CaM', ave_pos=False)

# Select only the superimposed spins (skipping mobile residues :2-4,42,56-57,76-80, identified from model-free order parameters).
select.spin(':17-41,43-55,58-67', change_all=True)
select.display()

# Define the magnetic dipole-dipole relaxation interaction.
interatom.define(spin_id1='@N', spin_id2='@H', direct_bond=True)
interatom.set_dist(spin_id1='@N', spin_id2='@H', ave_dist=NH_BOND_LENGTH_RDC)
interatom.unit_vectors(ave=False)

# Set the nuclear isotope and element.
spin.isotope(isotope='15N', spin_id='@N')
spin.isotope(isotope='1H', spin_id='@H')

# The alignment data.
align_data = [
    ['dy', 'RDC_DY_111011_spinID.txt', 'PCS_DY_200911.txt', 900.00423401],
    ['tb', 'RDC_TB_111011_spinID.txt', 'PCS_TB_200911.txt', 900.00423381],
    ['tm', 'RDC_TM_111011_spinID.txt', 'PCS_TM_200911.txt', 900.00423431],
    ['er', 'RDC_ER_111011_spinID.txt', 'PCS_ER_200911.txt', 899.90423151],
    ['yb', 'RDC_YB_110112_spinID.txt', 'PCS_YB_211111.txt', 899.90423111],
    ['ho', 'RDC_HO_300512_spinID.txt', 'PCS_HO_300412.txt', 899.80423481]
]

# Loop over the alignments.
for i in range(len(align_data)):
    # Alias the data.
    TAG = align_data[i][0]
    RDC_FILE = align_data[i][1]
    PCS_FILE = align_data[i][2]
    FRQ = align_data[i][3]

    # RDCs.
    rdc.read(align_id=TAG, file=RDC_FILE, dir='../..', data_type='D', spin_id1_col=1, spin_id2_col=2, data_col=3, error_col=4)

    # PCSs.
    pcs.read(align_id=TAG, file=PCS_FILE, dir='../..', res_num_col=1, data_col=2, error_col=4, spin_id='@N')
    pcs.read(align_id=TAG, file=PCS_FILE, dir='../..', res_num_col=1, data_col=3, error_col=4, spin_id='@H')

    # The temperature.
    spectrometer.temperature(id=TAG, temp=303.0)

    # The frequency.
    spectrometer.frequency(id=TAG, frq=FRQ, units='MHz')

# The paramagnetic centre (average Ca2+ position).
ave = array([7.608, 5.402, 16.725]) + array([7.295, 4.684, 16.168]) + array([7.338, 5.275, 16.086])
ave = ave / 3
paramag.centre(pos=ave)

# Set up the model.
n_state_model.select_model('fixed')

# Tensor optimisation.
print("\n\n# Tensor optimisation.\n\n")
minimise.grid_search(inc=5)
minimise.execute('newton', constraints=False)
state.save('tensor_only_fit', force=True)

# Optimisation of everything.
paramag.centre(fix=False)
minimise.execute('bfgs', constraints=False)

# PCS structural noise.
print("\n\n# Tensor optimisation with PCS structural noise.\n\n")
pcs.structural_noise(rmsd=0.3, sim_num=10000, file='structural_noise.agr', force=True)

# Optimisation of everything.
paramag.centre(fix=False)
minimise.execute('bfgs', constraints=False)

# Monte Carlo simulations.
monte_carlo.setup(number=500)
monte_carlo.create_data()
monte_carlo.initial_values()
minimise.execute('bfgs', constraints=False)
monte_carlo.error_analysis()

# Show the tensors.
align_tensor.display()

# Q-factors.
rdc.calc_q_factors()
pcs.calc_q_factors()

# Correlation plots.
rdc.corr_plot(file="rdc_corr.agr", force=True)
pcs.corr_plot(file="pcs_corr.agr", force=True)

# Save the program state.
state.save('tensor_fit', force=True)

The calculation of the additional PCS error due to structural noise is very important for the subsequent frame order analysis. A plot of such a calculation is shown in Figure 12.4

Figure 12.4: Structural noise simulation using the 2BE6 CaM-IQ X-ray ABC ensemble as an example. The simulated structural error, with the atom position uncertainty set to 0.3 Å, is an extra contribution to the measured PCS error. The PCS structural error is compared to the distance from the paramagnetic centre to illustrate the relationship between the two. The atomic positions were randomised 10,000 times with the lanthanide position assumed fixed, the PCS value back-calculated using a pre-fit alignment tensor, and the PCS standard deviations calculated.
\includegraphics[width=\textwidth]{images/cam_iq_abc_whole_structural_noise}

Statistics for the tensors, including the matrix or inter-tensor angles, the singular value decomposition (SVD) values and condition number, and a printout of the tensors for copying directly in the frame order analysis script, are obtained via the script:

# Script for determining the tensor angles and SVD values of the CaM-IQ tensors.

# Load the state.
state.load('tensor_fit')

# Loop over the alignment tensors, producing a string of relax user function commands.
print("\nTensor strings for relax input:")
string = ""
for A in cdp.align_tensors:
    string += "align_tensor.init(tensor='%s', params=(%s, %s, %s, %s, %s), param_types=2)\n" % (A.name, A.Axx, A.Ayy, A.Axy, A.Axz, A.Ayz)
    string += "align_tensor.init(tensor='%s', params=(%s, %s, %s, %s, %s), param_types=2, errors=True)\n" % (A.name, A.Axx_err, A.Ayy_err, A.Axy_err, A.Axz_err, A.Ayz_err)
print(string)

# The matrix angles.
align_tensor.matrix_angles(basis_set=0)
align_tensor.matrix_angles(basis_set=1)

# The SVD analysis.
align_tensor.svd(basis_set=0)
align_tensor.svd(basis_set=1)

The relax user manual (PDF), created 2016-10-28.