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Figure  2:  Th e  failure  of M onte Carlo (MC) s im ulations .  Plotted are  th e  re sults of 5000 
s im ulations  w h e reby th e  true  param eters  are  { S2 = 0.9 3, τe  = 2048 ps , R e x = 1.64 s−1}.
As  failed m odel-fre e  m odels fre q uently h ave low  χ2 value s  th ey are  often s elected to 
repre s ent th e  dynam ics  of th e  re s idue .  H ence  th e  final re sult can be  far from  th e  truth . 
Th e  related failure  of MC s im ulations  caus e s  a s ignifi cant overe stim ation of th e  para-
m eter e rrors .  Th erefore  failed m odels and s im ulations  s h ould re spectively be  elim in-
ated prior to m odel s election and during error analys is .

After te sting a large num ber of m inim isation algorith m s  –  including m any line  s earch , 
trust region, and conjugate gradient tech niq ue s  as  w ell as  th e  s im plex and Levenberg-
M arq uardt algorith m s  –  th e  m ost efficient and reliable local optim isation algorith m  
w ith in th e  convoluted m odel-fre e  space  w as  found to be  New ton m inim isation.

Figure  3:  Param eter difference  surface s .  Th e  difference s  are  betw e en th e  optim is ed 
value and true  value of each  grid point.  If th e  m inim um  h as  be en found for all points  
th e  surface s h ould be  fl at w ith  a h e igh t of zero.  Pos itive and negative h e igh ts  corre s -
pond to over and under-e stim ation re spectively.

SS22  ==  00..99 55,,
ττee   ==  22004488  ppss ,,
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SS22  ==  00..99 77,,
ττee   ==  00..55  ppss ,,
RR ee xx  ==  55..55  ss −−11,,
χχ22  ==  330000..22
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Figure  1:  Failure  of m odel-fre e  m odels .  An isosurface repre s entation of th e  χ2 space  
w h e re  th e  red sph e re  is  placed at th e  true  param eter value s  and th e  relaxation data h as  
be en random is ed.  In A) failure  is  caus ed by nois e  w h e reas  in B) failure  is  due  to th e  ab-
s ence  of th e  R e x param eter.  Both  are  s elected over all oth er m odels .

Figure  4:  O ptim isation failure .  Th e  cyan sph e re  repre s ents  th e  true  param eter value s . 
Four type s  of failure  include th e  s ingular m atrix failure  of th e  Levenberg-M arq uardt al-
gorith m , low  precis ion, th e  inability to slide  along th e  lim its , and a bug in M odelfre e4.
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Model-fre e  analys is  is  a problem  intricately link ed to th e  Brow nian rotational diffus ion 
of th e  m olecule.  Th e  diffus ion param eters  infl uence  th e  value s  of th e  m odel-fre e  para-
m eters  and vice  versa.  M odel s election is  also infl uenced by th e  tensor.  Th e s e  proper-
tie s  create  a m ulti-univers e , m ulti-m inim a optim isation and m odel s election problem . 
Th e  entirety of th e  problem  is  encapsulated by th e  universal s et

w h ere  l is  th e  num ber of re s idue s , m  is  th e  num ber of m odel-fre e  m odels, n is  th e  num -
ber of diffus ion m odels, and S  is  th e  global m odel of all m odel-fre e  and diffus ion para-
m eters .  Th e  solution w ith in U, th e  universal solution, can be  form ulated as

w h e re  θ is  th e  param eter vector and ∆K-L is  th e  Kullback -Leibler discrepancy.

Th e  current approach  to fi nding th e  universal solution is : start w ith  a diffus ion tensor 
e stim ate , optim is e  th e  m odel-fre e  m odels, s elect th e  be st m odel, and optim is e  th e  glob-
al m odel.  Th e s e  steps  are  repeated until convergence .  H e re  th e  revers e  is  propos ed –  
th e  m odel-fre e  param eters  are  optim is ed in th e  abs ence  of any global m odel param et-
e rs , th e  be st m odel is  s elected, and fi nally th e  diffus ion tensor is  optim is ed.
Five category of global m odel S  (defined above) can be  constructed:  each  re s idue  h av-
ing its  ow n local τm  (M I), sph e rical diffus ion (M II), th e  prolate sph e roid (M III), th e  ob-
late sph e roid (M IV), and th e  ellipsoid (MV).  Firstly m odel M I is  optim is ed and th e  
be st m odel-fre e  m odels are  s elected.  Th e  param eters  for M II to MV are  copied from  
M I, th e  local τm  rem oved, and finally th e  diffus ion tensor is  optim is ed.  Th en, iterat-
ively until convergence , th e  m odel-fre e  m odels are  optim is ed, failed m odels are  elim in-
ated, th e  be st s elected, and th e  global m odel is  optim is ed.

Figure  5:  Global statistics  and param eters  for th e  new  optim isation protocol applied to 
th e  O MP relaxation data of Gitti et al., (2005) us ing th e  X-ray structure  1F35.  Each  
glyph  corre sponds  to a fully m inim is ed global m odel S .

Gitti, R. K., W righ t, N. T., M argolis , J. W ., Varney, K. M ., W eber, D. J., and M argolis , F. L. (2005) Back bone  dynam ics  of th e  olfactory 
m ark e r prote in as  studied by 15N NMR relaxation m easurem ents . Bioch e m istry 44(28), 9 673– 9 679 .

Figure  6:  Com parison of th e  original O MP re sults w ith  th e  reanalys is .  In (b) th e  ori-
ginal and (c) th e  new  order param eters  are  m apped onto th e  structure .  Th e  R e x value s  
of (d) th e  original re sults and (e) th e  reanalys is  are  also s h ow n.

Th e  program  relax is  new  softw are  de s igned for th e  analys is  of NMR relaxation data. 
W ritten as  a flexible m odular collection of data analys is  tools, its  feature s  include :

Num erous  optim isation algorith m s . 
Num erous  m odel s election tech niq ue s .
Data visualisation us ing M olm ol, Grace, or O penDX.
Error analys is  th rough  M onte Carlo s im ulation.
Exponential relaxation curve fi tting to determ ine  th e  R1 and R2 relaxation rate s .
Calculation of th e  steady-state  NO E.
Reduced spectral dens ity m apping.
Th e  im plem entation of all aspects  of m odel-fre e  analys is .
GPL open source  licence  (fre ely dow nloadable from  h ttp://nm r-relax.com ).

Th e program  relax
Im proving optim isation and m odel-fre e  analys is  in revers e
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