| Trees | Indices | Help |
|
|---|
|
|
1 ###############################################################################
2 # #
3 # Copyright (C) 2003-2013 Edward d'Auvergne #
4 # #
5 # This file is part of the minfx optimisation library, #
6 # https://sourceforge.net/projects/minfx #
7 # #
8 # This program is free software: you can redistribute it and/or modify #
9 # it under the terms of the GNU General Public License as published by #
10 # the Free Software Foundation, either version 3 of the License, or #
11 # (at your option) any later version. #
12 # #
13 # This program is distributed in the hope that it will be useful, #
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of #
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the #
16 # GNU General Public License for more details. #
17 # #
18 # You should have received a copy of the GNU General Public License #
19 # along with this program. If not, see <http://www.gnu.org/licenses/>. #
20 # #
21 ###############################################################################
22
23 # Module docstring.
24 """Steepest descent (SD) optimization.
25
26 This file is part of the minfx optimisation library at U{https://sourceforge.net/projects/minfx}.
27 """
28
29 # Python module imports.
30 from numpy import dot
31
32 # Minfx module imports.
33 from minfx.base_classes import Line_search, Min
34
35
36 -def steepest_descent(func=None, dfunc=None, args=(), x0=None, min_options=None, func_tol=1e-25, grad_tol=None, maxiter=1e6, a0=1.0, mu=0.0001, eta=0.1, full_output=0, print_flag=0, print_prefix=""):
37 """Steepest descent minimisation."""
38
39 if print_flag:
40 if print_flag >= 2:
41 print(print_prefix)
42 print(print_prefix)
43 print(print_prefix + "Steepest descent minimisation")
44 print(print_prefix + "~~~~~~~~~~~~~~~~~~~~~~~~~~~~~")
45 min = Steepest_descent(func, dfunc, args, x0, min_options, func_tol, grad_tol, maxiter, a0, mu, eta, full_output, print_flag, print_prefix)
46 if min.init_failure:
47 print(print_prefix + "Initialisation of minimisation has failed.")
48 return None
49 results = min.minimise()
50 return results
51
52
54 - def __init__(self, func, dfunc, args, x0, min_options, func_tol, grad_tol, maxiter, a0, mu, eta, full_output, print_flag, print_prefix):
55 """Class for steepest descent minimisation specific functions.
56
57 Unless you know what you are doing, you should call the function 'steepest_descent' rather than using this class.
58 """
59
60 # Function arguments.
61 self.func = func
62 self.dfunc = dfunc
63 self.args = args
64 self.xk = x0
65 self.func_tol = func_tol
66 self.grad_tol = grad_tol
67 self.maxiter = maxiter
68 self.full_output = full_output
69 self.print_flag = print_flag
70 self.print_prefix = print_prefix
71
72 # Set a0.
73 self.a0 = a0
74
75 # Line search constants for the Wolfe conditions.
76 self.mu = mu
77 self.eta = eta
78
79 # Initialisation failure flag.
80 self.init_failure = 0
81
82 # Setup the line search options and algorithm.
83 self.line_search_options(min_options)
84 self.setup_line_search()
85
86 # Initialise the function, gradient, and Hessian evaluation counters.
87 self.f_count = 0
88 self.g_count = 0
89 self.h_count = 0
90
91 # Initialise the warning string.
92 self.warning = None
93
94 # Set the convergence test function.
95 self.setup_conv_tests()
96
97 # Calculate the function value and gradient vector.
98 self.fk, self.f_count = self.func(*(self.xk,)+self.args), self.f_count + 1
99 self.dfk, self.g_count = self.dfunc(*(self.xk,)+self.args), self.g_count + 1
100
101
103 """The new parameter function.
104
105 Find the search direction, do a line search, and get xk+1 and fk+1.
106 """
107
108 # Calculate the steepest descent direction.
109 self.pk = -self.dfk
110
111 # Update a0 using information about the last iteration.
112 try:
113 self.a0 = self.alpha * dot(self.dfk_last, -self.dfk_last) / dot(self.dfk, -self.dfk)
114 except AttributeError:
115 "First iteration."
116 pass
117
118 # Line search.
119 self.line_search()
120
121 # Find the new parameter vector and function value at that point.
122 self.xk_new = self.xk + self.alpha * self.pk
123 self.fk_new, self.f_count = self.func(*(self.xk_new,)+self.args), self.f_count + 1
124 self.dfk_new, self.g_count = self.dfunc(*(self.xk_new,)+self.args), self.g_count + 1
125
126
138
| Trees | Indices | Help |
|
|---|
| Generated by Epydoc 3.0.1 on Tue Nov 26 19:05:15 2013 | http://epydoc.sourceforge.net |