Package test_suite :: Package unit_tests :: Package _lib :: Package _dispersion :: Module test_mp05
[hide private]
[frames] | no frames]

Source Code for Module test_suite.unit_tests._lib._dispersion.test_mp05

  1  ############################################################################### 
  2  #                                                                             # 
  3  # Copyright (C) 2014 Edward d'Auvergne                                        # 
  4  # Copyright (C) 2014 Troels E. Linnet                                         # 
  5  #                                                                             # 
  6  # This file is part of the program relax (http://www.nmr-relax.com).          # 
  7  #                                                                             # 
  8  # This program is free software: you can redistribute it and/or modify        # 
  9  # it under the terms of the GNU General Public License as published by        # 
 10  # the Free Software Foundation, either version 3 of the License, or           # 
 11  # (at your option) any later version.                                         # 
 12  #                                                                             # 
 13  # This program is distributed in the hope that it will be useful,             # 
 14  # but WITHOUT ANY WARRANTY; without even the implied warranty of              # 
 15  # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the               # 
 16  # GNU General Public License for more details.                                # 
 17  #                                                                             # 
 18  # You should have received a copy of the GNU General Public License           # 
 19  # along with this program.  If not, see <http://www.gnu.org/licenses/>.       # 
 20  #                                                                             # 
 21  ############################################################################### 
 22   
 23  # Python module imports. 
 24  from numpy import arctan2, array, cos, float64, int16, pi, sin, zeros 
 25  from unittest import TestCase 
 26   
 27  # relax module imports. 
 28  from lib.dispersion.mp05 import r1rho_MP05 
 29   
 30   
31 -class Test_mp05(TestCase):
32 """Unit tests for the lib.dispersion.mp05 relax module.""" 33
34 - def setUp(self):
35 """Set up for all unit tests.""" 36 37 # The R1rho_prime parameter value (R1rho with no exchange). 38 self.r1rho_prime = 5.0 39 # The chemical shifts in rad/s. This is only used for off-resonance R1rho models. 40 self.omega = -35670.44192 41 # The structure of spin-lock or hard pulse offsets in rad/s. 42 self.offset = -35040.3526693 43 44 # Population of ground state. 45 self.pA = 0.95 46 # The chemical exchange difference between states A and B in ppm. 47 self.dw = 0.5 48 self.kex = 1000.0 49 # The R1 relaxation rates. 50 self.r1 = 1.0 51 # The spin-lock field strengths in Hertz. 52 self.spin_lock_nu1 = array([ 1000., 1500., 2000., 2500., 3000., 3500., 4000., 4500., 5000., 5500., 6000.]) 53 54 # The spin Larmor frequencies. 55 self.sfrq = 599.8908617*1E6 56 57 # Required data structures. 58 self.num_points = 11 59 self.R1rho = zeros(self.num_points, float64)
60 61
62 - def calc_r1rho(self):
63 """Calculate and check the R1rho values.""" 64 65 # Parameter conversions. 66 pB, dw_frq, spin_lock_omega1, spin_lock_omega1_squared = self.param_conversion(pA=self.pA, dw=self.dw, sfrq=self.sfrq, spin_lock_nu1=self.spin_lock_nu1) 67 68 # Calculate the R1rho values. 69 R1rho = r1rho_MP05(r1rho_prime=self.r1rho_prime, omega=self.omega, offset=self.offset, pA=self.pA, pB=pB, dw=dw_frq, kex=self.kex, R1=self.r1, spin_lock_fields=spin_lock_omega1, spin_lock_fields2=spin_lock_omega1_squared, back_calc=self.R1rho, num_points=self.num_points) 70 71 # Compare to function value. 72 # Larmor frequency [s^-1]. 73 Wa = self.omega 74 75 # Larmor frequency [s^-1]. 76 Wb = self.omega + dw_frq 77 78 # Pop-averaged Larmor frequency [s^-1]. 79 W = self.pA * Wa + pB * Wb 80 81 # Offset of spin-lock from pop-average. 82 d = W - self.offset 83 84 # The rotating frame flip angle. 85 theta = arctan2(spin_lock_omega1, d) 86 r1rho_no_rex = self.r1 * cos(theta)**2 + self.r1rho_prime * sin(theta)**2 87 88 # Check all R1rho values. 89 for i in range(self.num_points): 90 self.assertAlmostEqual(self.R1rho[i], r1rho_no_rex[i])
91 92
93 - def param_conversion(self, pA=None, dw=None, sfrq=None, spin_lock_nu1=None):
94 """Convert the parameters. 95 96 @keyword pA: The population of state A. 97 @type pA: float 98 @keyword dw: The chemical exchange difference between states A and B in ppm. 99 @type dw: float 100 @keyword sfrq: The spin Larmor frequencies in Hz. 101 @type sfrq: float 102 @keyword spin_lock_nu1: The spin-lock field strengths in Hertz. 103 @type spin_lock_nu1: float 104 @return: The parameters {pB, dw_frq, spin_lock_omega1, spin_lock_omega1_squared}. 105 @rtype: tuple of float 106 """ 107 108 # Calculate pB. 109 pB = 1.0 - pA 110 111 # Calculate spin Larmor frequencies in 2pi. 112 frqs = sfrq * 2 * pi 113 114 # Convert dw from ppm to rad/s. 115 dw_frq = dw * frqs / 1.e6 116 117 # The R1rho spin-lock field strengths (in rad.s-1). 118 spin_lock_omega1 = (2. * pi * spin_lock_nu1) 119 120 # The R1rho spin-lock field strengths squared (in rad^2.s^-2). 121 spin_lock_omega1_squared = spin_lock_omega1**2 122 123 # Return all values. 124 return pB, dw_frq, spin_lock_omega1, spin_lock_omega1_squared
125 126
127 - def test_mp05_no_rex1(self):
128 """Test the r1rho_mp05() function for no exchange when dw = 0.0.""" 129 130 # Parameter reset. 131 self.dw = 0.0 132 133 # Calculate and check the R1rho values. 134 self.calc_r1rho()
135 136
137 - def test_mp05_no_rex2(self):
138 """Test the r1rho_mp05() function for no exchange when pA = 1.0.""" 139 140 # Parameter reset. 141 self.pA = 1.0 142 143 # Calculate and check the R1rho values. 144 self.calc_r1rho()
145 146
147 - def test_mp05_no_rex3(self):
148 """Test the r1rho_mp05() function for no exchange when kex = 0.0.""" 149 150 # Parameter reset. 151 self.kex = 0.0 152 153 # Calculate and check the R1rho values. 154 self.calc_r1rho()
155 156
157 - def test_mp05_no_rex4(self):
158 """Test the r1rho_mp05() function for no exchange when dw = 0.0 and pA = 1.0.""" 159 160 # Parameter reset. 161 self.pA = 1.0 162 self.dw = 0.0 163 164 # Calculate and check the R1rho values. 165 self.calc_r1rho()
166 167
168 - def test_mp05_no_rex5(self):
169 """Test the r1rho_mp05() function for no exchange when dw = 0.0 and kex = 0.0.""" 170 171 # Parameter reset. 172 self.dw = 0.0 173 self.kex = 0.0 174 175 # Calculate and check the R1rho values. 176 self.calc_r1rho()
177 178
179 - def test_mp05_no_rex6(self):
180 """Test the r1rho_mp05() function for no exchange when pA = 1.0 and kex = 0.0.""" 181 182 # Parameter reset. 183 self.pA = 1.0 184 self.kex = 0.0 185 186 # Calculate and check the R1rho values. 187 self.calc_r1rho()
188 189
190 - def test_mp05_no_rex7(self):
191 """Test the r1rho_mp05() function for no exchange when dw = 0.0, pA = 1.0, and kex = 0.0.""" 192 193 # Parameter reset. 194 self.dw = 0.0 195 self.kex = 0.0 196 197 # Calculate and check the R1rho values. 198 self.calc_r1rho()
199 200
201 - def test_mp05_no_rex8(self):
202 """Test the r1rho_mp05() function for no exchange when kex = 1e20.""" 203 204 # Parameter reset. 205 self.kex = 1e20 206 207 # Calculate and check the R2eff values. 208 self.calc_r1rho()
209