| 
  | __init__(self,
        pipe_name=None,
        pipe_bundle=None,
        results_dir=None,
        write_results_dir=None,
        diff_model=None,
        mf_models=['m0', 'm1', 'm2', 'm3', 'm4', 'm5', 'm6', 'm7', 'm8', 'm9'],
        local_tm_models=['tm0', 'tm1', 'tm2', 'tm3', 'tm4', 'tm5', 'tm6', 'tm7', 'tm8'...,
        grid_inc=11,
        diff_tensor_grid_inc={'ellipsoid': 6, 'oblate': 11, 'prolate': 11, 'sphere': 11},
        min_algor='newton',
        mc_sim_num=500,
        max_iter=None,
        user_fns=None,
        conv_loop=True)(Constructor)
 | source code |  Perform the full model-free analysis protocol of d'Auvergne and 
  Gooley, 2008b. 
    Parameters:
        pipe_name(str) - The name of the data pipe containing the sequence info.  This 
          data pipe should have all values set including the CSA value, the
          bond length, the heteronucleus name and proton name.  It should 
          also have all relaxation data loaded.pipe_bundle(str) - The data pipe bundle to associate all spawned data pipes with.results_dir(str) - The directory where optimisation results will read from.  Results
          will also be saved to this directory if the write_results_dir 
          argument is not given.write_results_dir(str or None) - The directory where optimisation results will be saved in.  If 
          None, it will default to the value of the results_dir argument.  
          This is mainly used for debugging.diff_model(str or list of str) - The global diffusion model to optimise.  This can be one of 
          'local_tm', 'sphere', 'oblate', 'prolate', 'ellipsoid', or 
          'final'.  If all or a subset of these are supplied as a list, 
          then these will be automatically looped over and calculated.mf_models(list of str) - The model-free models.local_tm_models(list of str) - The model-free models.grid_inc(int) - The grid search size (the number of increments per dimension).diff_tensor_grid_inc(list of int) - A list of grid search sizes for the optimisation of the sphere, 
          prolate spheroid, oblate spheroid, and ellipsoid.min_algor(str) - The minimisation algorithm (in most cases this should not be 
          changed).mc_sim_num(int) - The number of Monte Carlo simulations to be used for error 
          analysis at the end of the analysis.max_iter(int or None.) - The maximum number of iterations for the global iteration.  Set 
          to None, then the algorithm iterates until convergence.user_fns(dict) - A dictionary of replacement user functions.  These will overwrite
          the standard user functions.  The key should be the name of the 
          user function or user function class and the value should be the 
          function or class instance.conv_loop(bool) - Automatic looping over all rounds until convergence. |