| Trees | Indices | Help | 
 | 
|---|
|  | 
Testing functions.
This file is part of the minfx optimisation library.
| 
 | |||
| 
 | |||
| 
 | |||
| 
 | |||
| 
 | |||
| 
 | |||
| 
 | |||
| 
 | |||
| 
 | |||
| 
 | |||
| 
 | |||
| __package__ =  | |||
Imports: cos, pi, sin, sqrt, array, float64, more_thuente
| 
 | |||
| 
 Test function 1. From More, J. J., and Thuente, D. J. 1994, Line search algorithms with guaranteed sufficient decrease. ACM Trans. Math. Softw. 20, 286-307. The function is: 
                         alpha
   phi(alpha)  =  - ---------------
                    alpha**2 + beta
 | 
| 
 Derivative of test function 1. From More, J. J., and Thuente, D. J. 1994, Line search algorithms with guaranteed sufficient decrease. ACM Trans. Math. Softw. 20, 286-307. The gradient is: 
                        2*alpha**2                 1
   phi'(alpha)  =  --------------------  -  ---------------
                   (alpha**2 + beta)**2     alpha**2 + beta
 | 
| 
 Test function 2. From More, J. J., and Thuente, D. J. 1994, Line search algorithms with guaranteed sufficient decrease. ACM Trans. Math. Softw. 20, 286-307. The function is: phi(alpha) = (alpha + beta)**5 - 2(alpha + beta)**4 | 
| 
 Derivative of test function 2. From More, J. J., and Thuente, D. J. 1994, Line search algorithms with guaranteed sufficient decrease. ACM Trans. Math. Softw. 20, 286-307. The gradient is: phi'(alpha) = 5(alpha + beta)**4 - 8(alpha + beta)**3 | 
| 
 Test function 3. From More, J. J., and Thuente, D. J. 1994, Line search algorithms with guaranteed sufficient decrease. ACM Trans. Math. Softw. 20, 286-307. The function is: 
                                2(1 - beta)       / l*pi         \ 
   phi(alpha)  =  phi0(alpha) + ----------- . sin | ---- . alpha |
                                   l*pi           \  2           /
where: 
                       /  1 - alpha,                     if alpha <= 1 - beta,
                       |
                       |  alpha - 1,                     if alpha >= 1 + beta,
       phi0(alpha) =  <
                       |   1                    1
                       | ------(alpha - 1)**2 + - beta,  if alpha in [1 - beta, 1 + beta].
                       \ 2*beta                 2
 | 
| 
 Derivative of test function 3. From More, J. J., and Thuente, D. J. 1994, Line search algorithms with guaranteed sufficient decrease. ACM Trans. Math. Softw. 20, 286-307. The gradient is: 
                                                  / l*pi         \ 
   phi(alpha)  =  phi0'(alpha) + (1 - beta) . cos | ---- . alpha |
                                                  \  2           /
where: 
                        /  -1,        if alpha <= 1 - beta,
                        |
                        |  1,         if alpha >= 1 + beta,
       phi0'(alpha) =  <
                        | alpha - 1
                        | ---------,  if alpha in [1 - beta, 1 + beta].
                        \   beta
 | 
| 
 Test functions 4, 5, and 6. From More, J. J., and Thuente, D. J. 1994, Line search algorithms with guaranteed sufficient decrease. ACM Trans. Math. Softw. 20, 286-307. The function is: 
   phi(alpha)  =  gamma(beta1) * sqrt((1 - alpha)**2 + beta2**2)
                      + gamma(beta2) * sqrt(alpha**2 + beta1**2)
where: 
       gamma(beta) = sqrt(1 + beta**2) - beta
 | 
| 
 Test functions 4, 5, and 6. From More, J. J., and Thuente, D. J. 1994, Line search algorithms with guaranteed sufficient decrease. ACM Trans. Math. Softw. 20, 286-307. The function is: 
                                             (1 - alpha)
   phi'(alpha)  =  - gamma(beta1) * -------------------------------
                                    sqrt((1 - alpha)**2 + beta2**2)
                                                  a
                       + gamma(beta2) * -------------------------
                                        sqrt(alpha**2 + beta1**2)
where: 
       gamma(beta) = sqrt(1 + beta**2) - beta
 | 
| Trees | Indices | Help | 
 | 
|---|
| Generated by Epydoc 3.0.1 on Fri Oct 28 15:37:26 2016 | http://epydoc.sourceforge.net |