| 
  | __init__(self,
        init_params=None,
        model_type=None,
        diff_type=None,
        diff_params=None,
        scaling_matrix=None,
        num_spins=None,
        equations=None,
        param_types=None,
        param_values=None,
        relax_data=None,
        errors=None,
        bond_length=None,
        csa=None,
        num_frq=0,
        frq=None,
        num_ri=None,
        remap_table=None,
        noe_r1_table=None,
        ri_labels=None,
        gx=0,
        gh=0,
        h_bar=0,
        mu0=0,
        num_params=None,
        vectors=None)
    (Constructor)
 | source code |  The model-free minimisation class. This class should be initialised before every calculation. Argumentsequation:  The model-free equation string which should be either 
    'mf_orig' or 'mf_ext'. param_types:  An array of the parameter types used in 
    minimisation. relax_data:  An array containing the experimental relaxation 
    values. errors:  An array containing the experimental errors. bond_length:  The fixed bond length in meters. csa:  The fixed CSA value. diff_type:  The diffusion tensor string which should be either 
    'sphere', 'spheroid', or 'ellipsoid'. diff_params:  An array with the diffusion parameters. scaling_matrix:  A diagonal matrix of scaling factors. Additional layer of equations to simplify the relaxation equations, gradients, and Hessians.The R1 and R2 equations are left alone, while the NOE is calculated 
    from the R1 and sigma_noe values. The relaxation equationsData structure:  data.ri Dimension:  1D, (relaxation data) Type:  
    numpy, float64 Dependencies:  data.ri_prime Required by:  data.chi2, 
    data.dchi2, data.d2chi2 The equations are: 
   R1()  =  R1'()
   R2()  =  R2'()
                  gH   sigma_noe()
   NOE()  =  1 +  -- . -----------
                  gN      R1()
The relaxation gradientsData structure:  data.dri Dimension:  2D, (parameters, relaxation 
    data) Type:  numpy array, float64 Dependencies:  data.ri_prime, 
    data.dri_prime Required by:  data.dchi2, data.d2chi2 The equations are: 
    dR1()       dR1'()
   -------  =  -------
   dthetaj     dthetaj
    dR2()       dR2'()
   -------  =  -------
   dthetaj     dthetaj
    dNOE()     gH      1      /        dsigma_noe()                    dR1()  \ 
   -------  =  -- . ------- . | R1() . ------------  -  sigma_noe() . ------- |
   dthetaj     gN   R1()**2   \          dthetaj                      dthetaj /
The relaxation HessiansData structure:  data.d2ri Dimension:  3D, (parameters, parameters, 
    relaxation data) Type:  numpy array, float64 Dependencies:  
    data.ri_prime, data.dri_prime, data.d2ri_prime Required by:  
    data.d2chi2 The equations are: 
        d2R1()             d2R1'()
   ---------------  =  ---------------
   dthetai.dthetaj     dthetai.dthetaj
        d2R2()             d2R2'()
   ---------------  =  ---------------
   dthetai.dthetaj     dthetai.dthetaj
       d2NOE()         gH      1      /               /      dR1()     dR1()                  d2R1()     \ 
   ---------------  =  -- . ------- . | sigma_noe() . | 2 . ------- . -------  -  R1() . --------------- |
   dthetai.dthetaj     gN   R1()**3   \               \     dthetai   dthetaj            dthetai.dthetaj /
                / dsigma_noe()    dR1()       dR1()    dsigma_noe()             d2sigma_noe()  \ \ 
       - R1() . | ------------ . -------  +  ------- . ------------  -  R1() . --------------- | |
                \   dthetai      dthetaj     dthetai     dthetaj               dthetai.dthetaj / /
The chi-sqared equationThe equation is: 
           _n_
           \    (Ri - Ri()) ** 2
   chi2  =  >   ----------------
           /__    sigma_i ** 2
           i=1
where: 
      
        Ri are the values of the measured relaxation data set.
      
        Ri() are the values of the back calculated relaxation data set.
      
        sigma_i are the values of the error set.
       The chi-sqared gradientThe equation is: 
                  _n_
    dchi2         \   /  Ri - Ri()      dRi()  \ 
   -------  =  -2  >  | ----------  .  ------- |
   dthetaj        /__ \ sigma_i**2     dthetaj /
                  i=1
where: 
      
        Ri are the values of the measured relaxation data set.
      
        Ri() are the values of the back calculated relaxation data set.
      
        sigma_i are the values of the error set.
       The chi-sqared HessianThe equation is: 
                        _n_
        d2chi2          \       1      /  dRi()     dRi()                         d2Ri()     \ 
   ---------------  = 2  >  ---------- | ------- . -------  -  (Ri - Ri()) . --------------- |
   dthetaj.dthetak      /__ sigma_i**2 \ dthetaj   dthetak                   dthetaj.dthetak /
                        i=1
where: 
      
        Ri are the values of the measured relaxation data set.
      
        Ri() are the values of the back calculated relaxation data set.
      
        sigma_i are the values of the error set.
       
   |