ncg(func=None,
        dfunc=None,
        d2func=None,
        args=(),
        x0=None,
        min_options=None,
        func_tol=1e-25,
        grad_tol=None,
        maxiter=1000000.0,
        a0=1.0,
        mu=0.0001,
        eta=0.9,
        full_output=0,
        print_flag=0,
        print_prefix='')
  
   | source code 
     | 
    
  
  Line search Newton conjugate gradient algorithm. 
  Page 140 from 'Numerical Optimization' by Jorge Nocedal and Stephen J.
  Wright, 1999, 2nd ed.  The algorithm is: 
  
    - 
      Given initial point x0.
    
 
    - 
      while 1:
      
        - 
          Compute a search direction pk by applying the CG method to Hk.pk 
          = -gk, starting from x0 = 0.  Terminate when ||rk|| <= 
          min(0.5,sqrt(||gk||)), or if negative curvature is encountered.
        
 
        - 
          Set xk+1 = xk + ak.pk, where ak satisfies the Wolfe, Goldstein, 
          or Armijo backtracking conditions.
        
 
       
     
   
  
   
 |