Module optimisation
source code
The model-free analysis optimisation functions.
    |  | 
        
          | disassemble_result(param_vector=None,
        func=None,
        iter=None,
        fc=None,
        gc=None,
        hc=None,
        warning=None,
        spin=None,
        sim_index=None,
        model_type=None,
        scaling_matrix=None) Disassemble the optimisation results.
 | source code |  | 
    | tuple | 
        
          | minimise_data_setup(data_store,
        min_algor,
        num_data_sets,
        min_options,
        spin=None,
        sim_index=None) Set up all the data required for minimisation.
 | source code |  | 
    | tuple |  | 
    |  | __package__ = 'specific_analyses.model_free' | 
Imports:
  generic_minimise,
  grid,
  grid_point_array,
  array,
  dot,
  float64,
  sys,
  lib,
  RelaxError,
  RelaxInfError,
  RelaxMultiVectorError,
  RelaxNaNError,
  isNaN,
  isInf,
  periodic_table,
  subsection,
  Memo,
  Result_command,
  Slave_command,
  pipes,
  return_interatom_list,
  return_spin,
  return_spin_from_index,
  assemble_param_vector,
  disassemble_param_vector,
  Mf
| 
  | disassemble_result(param_vector=None,
        func=None,
        iter=None,
        fc=None,
        gc=None,
        hc=None,
        warning=None,
        spin=None,
        sim_index=None,
        model_type=None,
        scaling_matrix=None)
   | source code |  Disassemble the optimisation results. 
    Parameters:
        param_vector(numpy array) - The model-free parameter vector.func(float) - The optimised chi-squared value.iter(int) - The number of optimisation steps required to find the minimum.fc(int) - The function count.gc(int) - The gradient count.hc(int) - The Hessian count.warning(str or None) - Any optimisation warnings.spin(SpinContainer instance or None) - The spin container.sim_index(int or None) - The Monte Carlo simulation index.model_type(str) - The model-free model type, one of 'mf', 'local_tm', 'diff', or 
          'all'.scaling_matrix(numpy diagonal matrix) - The diagonal, square scaling matrix. | 
 
| 
  | minimise_data_setup(data_store,
        min_algor,
        num_data_sets,
        min_options,
        spin=None,
        sim_index=None)
   | source code |  Set up all the data required for minimisation. 
    Parameters:
        data_store(class instance) - A data storage container.min_algor(str) - The minimisation algorithm to use.num_data_sets(int) - The number of data sets.min_options(list) - The minimisation options array.spin(SpinContainer instance) - The spin data container.sim_index(int) - The optional MC simulation index.Returns: tupleAn insane tuple.  The full tuple is (ri_data, ri_data_err, 
          equations, param_types, param_values, r, csa, num_frq, frq, 
          num_ri, remap_table, noe_r1_table, ri_types, num_params, 
          xh_unit_vectors, diff_type, diff_params) | 
 
| 
  | relax_data_opt_structs(spin,
        sim_index=None)
   | source code |  Package the relaxation data into the data structures used for 
  optimisation. 
    Parameters:
        spin(SpinContainer instance) - The spin container to extract the data from.sim_index(int) - The optional MC simulation index.Returns: tupleThe structures ri_data, ri_data_err, num_frq, num_ri, ri_ids, 
          frq, remap_table, noe_r1_table. |