Subsections

Rigid model equations

Rigid model rotation matrices

For the rigid model, there is no motion so the rotation matrix is simply the identity matrix

R = $\displaystyle \begin{pmatrix}1 & . & . \\  . & 1 & . \\  . & . & 1 \\  \end{pmatrix}$. (16.2)


Rigid frame order matrix

The frame order matrix is

Daeg(n) = R⊗n, (16.3)

where surface normalisation factor is 1.

Rigid 1 degree frame order

The 1 degree frame order matrix with tensor rank-2 is the identity matrix

\begin{subequations}\begin{align}\textrm{Daeg}^{(1)}&= R^{\otimes 1} , \\ &= \be...
... . & . \\ . & 1 & . \\ . & . & 1 \\ \end{pmatrix}. \end{align}\end{subequations}

Rigid 2 degree frame order

The 2 degree frame order matrix with tensor rank-4 is the identity matrix

\begin{subequations}\begin{align}\textrm{Daeg}^{(2)}&= R^{\otimes 2} , \\ &= \be...
... & . & . & . & . & . & . & . & 1 \\ \end{pmatrix}. \end{align}\end{subequations}

The relax user manual (PDF), created 2016-10-28.