Subsections

The correlation time Hessians of the spheroid

τm - τm partial derivative

The second partial derivatives with respect to the geometric parameter τm twice are

\begin{subequations}\begin{align}\frac{\partial^2 \tau_{-1}}{{\partial \tau_m}^2...
...{-3} (6\mathfrak{D}_{iso} + 2\mathfrak{D}_a)^{-2}. \end{align}\end{subequations}

τm - $ \mathfrak{D}_a$ partial derivative

The second partial derivatives with respect to the geometric parameters τm and $ \mathfrak{D}_a$ are

\begin{subequations}\begin{align}\frac{\partial^2 \tau_{-1}}{\partial \tau_m \cd...
...{-2} (6\mathfrak{D}_{iso} + 2\mathfrak{D}_a)^{-3}. \end{align}\end{subequations}

$ \mathfrak{D}_a$ - $ \mathfrak{D}_a$ partial derivative

The second partial derivatives with respect to the geometric parameter $ \mathfrak{D}_a$ twice are

\begin{subequations}\begin{align}\frac{\partial^2 \tau_{-1}}{{\partial \mathfrak...
...&= 8 (6\mathfrak{D}_{iso} + 2\mathfrak{D}_a)^{-3}. \end{align}\end{subequations}

The relax user manual (PDF), created 2016-10-28.