Subsections

The correlation time gradients of the ellipsoid

τm partial derivative

The partial derivatives with respect to the geometric parameter τm are

\begin{subequations}\begin{align}\frac{\partial \tau_{-2}}{\partial \tau_m} &= {...
...frak{D}_{iso} + 2\mathfrak{D}_a\mathfrak{R})^{-2}. \end{align}\end{subequations}

$ \mathfrak{D}_a$ partial derivative

The partial derivatives with respect to the geometric parameter $ \mathfrak{D}_a$ are

\begin{subequations}\begin{align}\frac{\partial \tau_{-2}}{\partial \mathfrak{D}...
...frak{D}_{iso} + 2\mathfrak{D}_a\mathfrak{R})^{-2}. \end{align}\end{subequations}

$ \mathfrak{D}_r$ partial derivative

The partial derivatives with respect to the geometric parameter $ \mathfrak{D}_r$ are

\begin{subequations}\begin{align}\frac{\partial \tau_{-2}}{\partial \mathfrak{D}...
...frak{D}_{iso} + 2\mathfrak{D}_a\mathfrak{R})^{-2}. \end{align}\end{subequations}

The relax user manual (PDF), created 2016-10-28.