| Trees | Indices | Help |
|
|---|
|
|
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
Imports: dot, cos, sin
|
|||
Function for calculating the direction cosine dz.
dz is the dot product between the unit bond vector and the unit vector along Dpar and is given
by
dz = XH . Dpar.
The unit Dpar vector is
| sin(theta) * cos(phi) |
Dpar = | sin(theta) * sin(phi) |
| cos(theta) |
|
Function for calculating the partial derivatives of the direction cosine dz.
The theta partial derivative of the unit Dpar vector is
dDpar | cos(theta) * cos(phi) |
------ = | cos(theta) * sin(phi) |
dtheta | -sin(theta) |
The phi partial derivative of the unit Dpar vector is
dDpar | -sin(theta) * sin(phi) |
----- = | sin(theta) * cos(phi) |
dphi | 0 |
O is the orientational parameter set {theta, phi}
|
Function for calculating the second partial derivatives of the direction cosine dz.
The theta-theta second partial derivative of the unit Dpar vector is
d2Dpar | -sin(theta) * cos(phi) |
------- = | -sin(theta) * sin(phi) |
dtheta2 | -cos(theta) |
The theta-phi second partial derivative of the unit Dpar vector is
d2Dpar | -cos(theta) * sin(phi) |
----------- = | cos(theta) * cos(phi) |
dtheta.dphi | 0 |
The phi-phi second partial derivative of the unit Dpar vector is
dDpar | -sin(theta) * cos(phi) |
----- = | -sin(theta) * sin(phi) |
dphi2 | 0 |
O is the orientational parameter set {theta, phi}
|
Function for calculating the direction cosines dx, dy, and dz.
Direction cosines
~~~~~~~~~~~~~~~~~
dx is the dot product between the unit bond vector and the unit vector along Dx. The
equation is
dx = XH . Dx
dy is the dot product between the unit bond vector and the unit vector along Dy. The
equation is
dy = XH . Dy
dz is the dot product between the unit bond vector and the unit vector along Dz. The
equation is
dz = XH . Dz
Unit vectors
~~~~~~~~~~~~
The unit Dx vector is
| -sin(alpha) * sin(gamma) + cos(alpha) * cos(beta) * cos(gamma) |
Dx = | -sin(alpha) * cos(gamma) - cos(alpha) * cos(beta) * sin(gamma) |
| cos(alpha) * sin(beta) |
The unit Dy vector is
| cos(alpha) * sin(gamma) + sin(alpha) * cos(beta) * cos(gamma) |
Dy = | cos(alpha) * cos(gamma) - sin(alpha) * cos(beta) * sin(gamma) |
| sin(alpha) * sin(beta) |
The unit Dz vector is
| -sin(beta) * cos(gamma) |
Dz = | sin(beta) * sin(gamma) |
| cos(beta) |
|
Function for calculating the partial derivatives of the direction cosines dx, dy, and dz.
Dx gradient
~~~~~~~~~~~
The alpha partial derivative of the unit Dx vector is
dDx | -cos(alpha) * sin(gamma) - sin(alpha) * cos(beta) * cos(gamma) |
------ = | -cos(alpha) * cos(gamma) + sin(alpha) * cos(beta) * sin(gamma) |
dalpha | -sin(alpha) * sin(beta) |
The beta partial derivative of the unit Dx vector is
dDx | -cos(alpha) * sin(beta) * cos(gamma) |
----- = | cos(alpha) * sin(beta) * sin(gamma) |
dbeta | cos(alpha) * cos(beta) |
The gamma partial derivative of the unit Dx vector is
dDx | -sin(alpha) * cos(gamma) - cos(alpha) * cos(beta) * sin(gamma) |
------ = | sin(alpha) * sin(gamma) - cos(alpha) * cos(beta) * cos(gamma) |
dgamma | 0 |
Dy gradient
~~~~~~~~~~~
The alpha partial derivative of the unit Dy vector is
dDy | -sin(alpha) * sin(gamma) + cos(alpha) * cos(beta) * cos(gamma) |
------ = | -sin(alpha) * cos(gamma) - cos(alpha) * cos(beta) * sin(gamma) |
dalpha | cos(alpha) * sin(beta) |
The beta partial derivative of the unit Dy vector is
dDy | -sin(alpha) * sin(beta) * cos(gamma) |
----- = | sin(alpha) * sin(beta) * sin(gamma) |
dbeta | sin(alpha) * cos(beta) |
The gamma partial derivative of the unit Dy vector is
dDy | cos(alpha) * cos(gamma) - sin(alpha) * cos(beta) * sin(gamma) |
------ = | -cos(alpha) * sin(gamma) - sin(alpha) * cos(beta) * cos(gamma) |
dgamma | 0 |
Dz gradient
~~~~~~~~~~~
The alpha partial derivative of the unit Dz vector is
dDz | 0 |
------ = | 0 |
dalpha | 0 |
The beta partial derivative of the unit Dz vector is
dDz | -cos(beta) * cos(gamma) |
----- = | cos(beta) * sin(gamma) |
dbeta | -sin(beta) |
The gamma partial derivative of the unit Dz vector is
dDz | sin(beta) * sin(gamma) |
------ = | sin(beta) * cos(gamma) |
dgamma | 0 |
|
Function for calculating the second partial derivatives of the direction cosines dx, dy, dz.
Dx Hessian
~~~~~~~~~~
The alpha-alpha second partial derivative of the unit Dx vector is
d2Dx | sin(alpha) * sin(gamma) - cos(alpha) * cos(beta) * cos(gamma) |
------- = | sin(alpha) * cos(gamma) + cos(alpha) * cos(beta) * sin(gamma) |
dalpha2 | -cos(alpha) * sin(beta) |
The alpha-beta second partial derivative of the unit Dx vector is
d2Dx | sin(alpha) * sin(beta) * cos(gamma) |
------------ = | -sin(alpha) * sin(beta) * sin(gamma) |
dalpha.dbeta | -sin(alpha) * cos(beta) |
The alpha-gamma second partial derivative of the unit Dx vector is
d2Dx | -cos(alpha) * cos(gamma) + sin(alpha) * cos(beta) * sin(gamma) |
------------- = | cos(alpha) * sin(gamma) + sin(alpha) * cos(beta) * cos(gamma) |
dalpha.dgamma | 0 |
The beta-beta second partial derivative of the unit Dx vector is
d2Dx | -cos(alpha) * cos(beta) * cos(gamma) |
------ = | cos(alpha) * cos(beta) * sin(gamma) |
dbeta2 | -cos(alpha) * sin(beta) |
The beta-gamma second partial derivative of the unit Dx vector is
d2Dx | cos(alpha) * sin(beta) * sin(gamma) |
------------ = | cos(alpha) * sin(beta) * cos(gamma) |
dbeta.dgamma | 0 |
The gamma-gamma second partial derivative of the unit Dx vector is
d2Dx | sin(alpha) * sin(gamma) - cos(alpha) * cos(beta) * cos(gamma) |
------- = | sin(alpha) * cos(gamma) + cos(alpha) * cos(beta) * sin(gamma) |
dgamma2 | 0 |
Dy Hessian
~~~~~~~~~~
The alpha-alpha second partial derivative of the unit Dy vector is
d2Dy | -cos(alpha) * sin(gamma) - sin(alpha) * cos(beta) * cos(gamma) |
------- = | -cos(alpha) * cos(gamma) + sin(alpha) * cos(beta) * sin(gamma) |
dalpha2 | -sin(alpha) * sin(beta) |
The alpha-beta second partial derivative of the unit Dy vector is
d2Dy | -cos(alpha) * sin(beta) * cos(gamma) |
------------ = | cos(alpha) * sin(beta) * sin(gamma) |
dalpha.dbeta | cos(alpha) * cos(beta) |
The alpha-gamma second partial derivative of the unit Dy vector is
d2Dy | -sin(alpha) * cos(gamma) - cos(alpha) * cos(beta) * sin(gamma) |
------------- = | sin(alpha) * sin(gamma) - cos(alpha) * cos(beta) * cos(gamma) |
dalpha.dgamma | 0 |
The beta-beta second partial derivative of the unit Dy vector is
d2Dy | -sin(alpha) * cos(beta) * cos(gamma) |
------ = | sin(alpha) * cos(beta) * sin(gamma) |
dbeta2 | -sin(alpha) * sin(beta) |
The beta-gamma second partial derivative of the unit Dy vector is
d2Dy | sin(alpha) * sin(beta) * sin(gamma) |
------------ = | sin(alpha) * sin(beta) * cos(gamma) |
dbeta.dgamma | 0 |
The gamma-gamma second partial derivative of the unit Dy vector is
d2Dy | -cos(alpha) * sin(gamma) - sin(alpha) * cos(beta) * cos(gamma) |
------- = | -cos(alpha) * cos(gamma) + sin(alpha) * cos(beta) * sin(gamma) |
dgamma2 | 0 |
Dz Hessian
~~~~~~~~~~
The alpha-alpha second partial derivative of the unit Dz vector is
d2Dz | 0 |
------- = | 0 |
dalpha2 | 0 |
The alpha-beta second partial derivative of the unit Dz vector is
d2Dz | 0 |
------------ = | 0 |
dalpha.dbeta | 0 |
The alpha-gamma second partial derivative of the unit Dz vector is
d2Dz | 0 |
------------- = | 0 |
dalpha.dgamma | 0 |
The beta-beta second partial derivative of the unit Dz vector is
d2Dz | sin(beta) * cos(gamma) |
------ = | -sin(beta) * sin(gamma) |
dbeta2 | -cos(beta) |
The beta-gamma second partial derivative of the unit Dz vector is
d2Dz | cos(beta) * sin(gamma) |
------------ = | cos(beta) * cos(gamma) |
dbeta.dgamma | 0 |
The gamma-gamma second partial derivative of the unit Dz vector is
d2Dz | sin(beta) * cos(gamma) |
------- = | -sin(beta) * sin(gamma) |
dgamma2 | 0 |
|
| Trees | Indices | Help |
|
|---|
| Generated by Epydoc 3.0.1 on Wed Apr 10 14:04:10 2013 | http://epydoc.sourceforge.net |