| Trees | Indices | Help |
|
|---|
|
|
|
|||
|
|||
|
|||
|
|||
Imports: copy, dot, sqrt, cubic_ext, quadratic_fafbga, quadratic
|
|||
A line search algorithm implemented using the strong Wolfe conditions.
Algorithm 3.2, page 59, from 'Numerical Optimization' by Jorge Nocedal and Stephen J. Wright,
1999, 2nd ed.
Requires the gradient function.
#######################################################################################
These functions require serious debugging and recoding to work properly (especially the
safeguarding).
#######################################################################################
Function options
~~~~~~~~~~~~~~~~
func - The function to minimise.
func_prime - The function which returns the gradient vector.
args - The tuple of arguments to supply to the functions func and dfunc.
x - The parameter vector at minimisation step k.
f - The function value at the point x.
g - The function gradient vector at the point x.
p - The descent direction.
a_init - Initial step length.
a_max - The maximum value for the step length.
mu - Constant determining the slope for the sufficient decrease condition
(0 < mu < eta < 1).
eta - Constant used for the Wolfe curvature condition (0 < mu < eta < 1).
|
Find the minimum function value in the open interval (a_lo, a_hi) Algorithm 3.3, page 60, from 'Numerical Optimization' by Jorge Nocedal and Stephen J. Wright, 1999, 2nd ed. |
| Trees | Indices | Help |
|
|---|
| Generated by Epydoc 3.0.1 on Wed Apr 10 14:04:10 2013 | http://epydoc.sourceforge.net |