| Trees | Indices | Help | 
 | 
|---|
|  | 
| 
 | |||
| 
 | |||
| 
 | |||
| 
 | |||
| 
 | |||
| 
 | |||
| 
 | |||
| 
 | |||
| __package__ =  | |||
Imports: cos, sin, dot
| 
 | |||
| 
 Function for calculating the direction cosine dz. dz is the dot product between the unit bond vector and the unit vector along Dpar and is given by: dz = XH . Dpar. The unit Dpar vector is: 
            | sin(theta) * cos(phi) |
   Dpar  =  | sin(theta) * sin(phi) |
            |      cos(theta)       |
 | 
| 
 Function for calculating the partial derivatives of the direction cosine dz. The theta partial derivative of the unit Dpar vector is: dDpar | cos(theta) * cos(phi) | ------ = | cos(theta) * sin(phi) | dtheta | -sin(theta) | The phi partial derivative of the unit Dpar vector is: dDpar | -sin(theta) * sin(phi) | ----- = | sin(theta) * cos(phi) | dphi | 0 | O is the orientational parameter set {theta, phi} | 
| 
 Function for calculating the second partial derivatives of the direction cosine dz. The theta-theta second partial derivative of the unit Dpar vector is: d2Dpar | -sin(theta) * cos(phi) | ------- = | -sin(theta) * sin(phi) | dtheta2 | -cos(theta) | The theta-phi second partial derivative of the unit Dpar vector is: 
     d2Dpar        | -cos(theta) * sin(phi) |
   -----------  =  |  cos(theta) * cos(phi) |
   dtheta.dphi     |           0            |
The phi-phi second partial derivative of the unit Dpar vector is: dDpar | -sin(theta) * cos(phi) | ----- = | -sin(theta) * sin(phi) | dphi2 | 0 | O is the orientational parameter set {theta, phi} | 
| 
 Function for calculating the direction cosines dx, dy, and dz. Direction cosinesdx is the dot product between the unit bond vector and the unit vector along Dx. The equation is: dx = XH . Dx dy is the dot product between the unit bond vector and the unit vector along Dy. The equation is: dy = XH . Dy dz is the dot product between the unit bond vector and the unit vector along Dz. The equation is: dz = XH . Dz Unit vectorsThe unit Dx vector is: 
          | -sin(alpha) * sin(gamma) + cos(alpha) * cos(beta) * cos(gamma) |
   Dx  =  | -sin(alpha) * cos(gamma) - cos(alpha) * cos(beta) * sin(gamma) |
          |                    cos(alpha) * sin(beta)                      |
The unit Dy vector is: 
          | cos(alpha) * sin(gamma) + sin(alpha) * cos(beta) * cos(gamma) |
   Dy  =  | cos(alpha) * cos(gamma) - sin(alpha) * cos(beta) * sin(gamma) |
          |                   sin(alpha) * sin(beta)                      |
The unit Dz vector is: 
          | -sin(beta) * cos(gamma) |
   Dz  =  |  sin(beta) * sin(gamma) |
          |        cos(beta)        |
 | 
| 
 Function for calculating the partial derivatives of the direction cosines dx, dy, and dz. Dx gradientThe alpha partial derivative of the unit Dx vector is: 
    dDx       | -cos(alpha) * sin(gamma) - sin(alpha) * cos(beta) * cos(gamma) |
   ------  =  | -cos(alpha) * cos(gamma) + sin(alpha) * cos(beta) * sin(gamma) |
   dalpha     |                   -sin(alpha) * sin(beta)                      |
The beta partial derivative of the unit Dx vector is: 
    dDx      | -cos(alpha) * sin(beta) * cos(gamma) |
   -----  =  |  cos(alpha) * sin(beta) * sin(gamma) |
   dbeta     |       cos(alpha) * cos(beta)         |
The gamma partial derivative of the unit Dx vector is: 
    dDx       | -sin(alpha) * cos(gamma) - cos(alpha) * cos(beta) * sin(gamma) |
   ------  =  |  sin(alpha) * sin(gamma) - cos(alpha) * cos(beta) * cos(gamma) |
   dgamma     |                             0                                  |
Dy gradientThe alpha partial derivative of the unit Dy vector is: 
    dDy       | -sin(alpha) * sin(gamma) + cos(alpha) * cos(beta) * cos(gamma) |
   ------  =  | -sin(alpha) * cos(gamma) - cos(alpha) * cos(beta) * sin(gamma) |
   dalpha     |                    cos(alpha) * sin(beta)                      |
The beta partial derivative of the unit Dy vector is: 
    dDy      | -sin(alpha) * sin(beta) * cos(gamma) |
   -----  =  |  sin(alpha) * sin(beta) * sin(gamma) |
   dbeta     |       sin(alpha) * cos(beta)         |
The gamma partial derivative of the unit Dy vector is: 
    dDy       |  cos(alpha) * cos(gamma) - sin(alpha) * cos(beta) * sin(gamma) |
   ------  =  | -cos(alpha) * sin(gamma) - sin(alpha) * cos(beta) * cos(gamma) |
   dgamma     |                             0                                  |
Dz gradientThe alpha partial derivative of the unit Dz vector is: 
    dDz       | 0 |
   ------  =  | 0 |
   dalpha     | 0 |
The beta partial derivative of the unit Dz vector is: 
    dDz      | -cos(beta) * cos(gamma) |
   -----  =  |  cos(beta) * sin(gamma) |
   dbeta     |        -sin(beta)       |
The gamma partial derivative of the unit Dz vector is: 
    dDz       | sin(beta) * sin(gamma) |
   ------  =  | sin(beta) * cos(gamma) |
   dgamma     |           0            |
 | 
| 
 Function for calculating the second partial derivatives of the direction cosines dx, dy, dz. Dx HessianThe alpha-alpha second partial derivative of the unit Dx vector is: 
    d2Dx       | sin(alpha) * sin(gamma) - cos(alpha) * cos(beta) * cos(gamma) |
   -------  =  | sin(alpha) * cos(gamma) + cos(alpha) * cos(beta) * sin(gamma) |
   dalpha2     |                  -cos(alpha) * sin(beta)                      |
The alpha-beta second partial derivative of the unit Dx vector is: 
       d2Dx         |  sin(alpha) * sin(beta) * cos(gamma) |
   ------------  =  | -sin(alpha) * sin(beta) * sin(gamma) |
   dalpha.dbeta     |      -sin(alpha) * cos(beta)         |
The alpha-gamma second partial derivative of the unit Dx vector is: 
       d2Dx          | -cos(alpha) * cos(gamma) + sin(alpha) * cos(beta) * sin(gamma) |
   -------------  =  |  cos(alpha) * sin(gamma) + sin(alpha) * cos(beta) * cos(gamma) |
   dalpha.dgamma     |                             0                                  |
The beta-beta second partial derivative of the unit Dx vector is: 
    d2Dx      | -cos(alpha) * cos(beta) * cos(gamma) |
   ------  =  |  cos(alpha) * cos(beta) * sin(gamma) |
   dbeta2     |      -cos(alpha) * sin(beta)         |
The beta-gamma second partial derivative of the unit Dx vector is: 
       d2Dx         | cos(alpha) * sin(beta) * sin(gamma) |
   ------------  =  | cos(alpha) * sin(beta) * cos(gamma) |
   dbeta.dgamma     |                 0                   |
The gamma-gamma second partial derivative of the unit Dx vector is: 
    d2Dx       | sin(alpha) * sin(gamma) - cos(alpha) * cos(beta) * cos(gamma) |
   -------  =  | sin(alpha) * cos(gamma) + cos(alpha) * cos(beta) * sin(gamma) |
   dgamma2     |                            0                                  |
Dy HessianThe alpha-alpha second partial derivative of the unit Dy vector is: 
    d2Dy       | -cos(alpha) * sin(gamma) - sin(alpha) * cos(beta) * cos(gamma) |
   -------  =  | -cos(alpha) * cos(gamma) + sin(alpha) * cos(beta) * sin(gamma) |
   dalpha2     |                   -sin(alpha) * sin(beta)                      |
The alpha-beta second partial derivative of the unit Dy vector is: 
       d2Dy         | -cos(alpha) * sin(beta) * cos(gamma) |
   ------------  =  |  cos(alpha) * sin(beta) * sin(gamma) |
   dalpha.dbeta     |       cos(alpha) * cos(beta)         |
The alpha-gamma second partial derivative of the unit Dy vector is: 
       d2Dy          | -sin(alpha) * cos(gamma) - cos(alpha) * cos(beta) * sin(gamma) |
   -------------  =  |  sin(alpha) * sin(gamma) - cos(alpha) * cos(beta) * cos(gamma) |
   dalpha.dgamma     |                             0                                  |
The beta-beta second partial derivative of the unit Dy vector is: 
    d2Dy      | -sin(alpha) * cos(beta) * cos(gamma) |
   ------  =  |  sin(alpha) * cos(beta) * sin(gamma) |
   dbeta2     |      -sin(alpha) * sin(beta)         |
The beta-gamma second partial derivative of the unit Dy vector is: 
       d2Dy         | sin(alpha) * sin(beta) * sin(gamma) |
   ------------  =  | sin(alpha) * sin(beta) * cos(gamma) |
   dbeta.dgamma     |                 0                   |
The gamma-gamma second partial derivative of the unit Dy vector is: 
    d2Dy       | -cos(alpha) * sin(gamma) - sin(alpha) * cos(beta) * cos(gamma) |
   -------  =  | -cos(alpha) * cos(gamma) + sin(alpha) * cos(beta) * sin(gamma) |
   dgamma2     |                             0                                  |
Dz HessianThe alpha-alpha second partial derivative of the unit Dz vector is: 
    d2Dz       | 0 |
   -------  =  | 0 |
   dalpha2     | 0 |
The alpha-beta second partial derivative of the unit Dz vector is: 
       d2Dz         | 0 |
   ------------  =  | 0 |
   dalpha.dbeta     | 0 |
The alpha-gamma second partial derivative of the unit Dz vector is: 
        d2Dz         | 0 |
   -------------  =  | 0 |
   dalpha.dgamma     | 0 |
The beta-beta second partial derivative of the unit Dz vector is: 
    d2Dz      |  sin(beta) * cos(gamma) |
   ------  =  | -sin(beta) * sin(gamma) |
   dbeta2     |        -cos(beta)       |
The beta-gamma second partial derivative of the unit Dz vector is: 
       d2Dz         | cos(beta) * sin(gamma) |
   ------------  =  | cos(beta) * cos(gamma) |
   dbeta.dgamma     |           0            |
The gamma-gamma second partial derivative of the unit Dz vector is: 
    d2Dz       |  sin(beta) * cos(gamma) |
   -------  =  | -sin(beta) * sin(gamma) |
   dgamma2     |            0            |
 | 
| Trees | Indices | Help | 
 | 
|---|
| Generated by Epydoc 3.0.1 on Wed Apr 10 13:30:29 2013 | http://epydoc.sourceforge.net |