Trees | Indices | Help |
|
---|
|
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|
|||
__package__ =
|
Imports: cos, sin, dot
|
Function for calculating the direction cosine dz. dz is the dot product between the unit bond vector and the unit vector along Dpar and is given by: dz = XH . Dpar. The unit Dpar vector is: | sin(theta) * cos(phi) | Dpar = | sin(theta) * sin(phi) | | cos(theta) | |
Function for calculating the partial derivatives of the direction cosine dz. The theta partial derivative of the unit Dpar vector is: dDpar | cos(theta) * cos(phi) | ------ = | cos(theta) * sin(phi) | dtheta | -sin(theta) | The phi partial derivative of the unit Dpar vector is: dDpar | -sin(theta) * sin(phi) | ----- = | sin(theta) * cos(phi) | dphi | 0 | O is the orientational parameter set {theta, phi} |
Function for calculating the second partial derivatives of the direction cosine dz. The theta-theta second partial derivative of the unit Dpar vector is: d2Dpar | -sin(theta) * cos(phi) | ------- = | -sin(theta) * sin(phi) | dtheta2 | -cos(theta) | The theta-phi second partial derivative of the unit Dpar vector is: d2Dpar | -cos(theta) * sin(phi) | ----------- = | cos(theta) * cos(phi) | dtheta.dphi | 0 | The phi-phi second partial derivative of the unit Dpar vector is: dDpar | -sin(theta) * cos(phi) | ----- = | -sin(theta) * sin(phi) | dphi2 | 0 | O is the orientational parameter set {theta, phi} |
Function for calculating the direction cosines dx, dy, and dz. Direction cosinesdx is the dot product between the unit bond vector and the unit vector along Dx. The equation is: dx = XH . Dx dy is the dot product between the unit bond vector and the unit vector along Dy. The equation is: dy = XH . Dy dz is the dot product between the unit bond vector and the unit vector along Dz. The equation is: dz = XH . Dz Unit vectorsThe unit Dx vector is: | -sin(alpha) * sin(gamma) + cos(alpha) * cos(beta) * cos(gamma) | Dx = | -sin(alpha) * cos(gamma) - cos(alpha) * cos(beta) * sin(gamma) | | cos(alpha) * sin(beta) | The unit Dy vector is: | cos(alpha) * sin(gamma) + sin(alpha) * cos(beta) * cos(gamma) | Dy = | cos(alpha) * cos(gamma) - sin(alpha) * cos(beta) * sin(gamma) | | sin(alpha) * sin(beta) | The unit Dz vector is: | -sin(beta) * cos(gamma) | Dz = | sin(beta) * sin(gamma) | | cos(beta) | |
Function for calculating the partial derivatives of the direction cosines dx, dy, and dz. Dx gradientThe alpha partial derivative of the unit Dx vector is: dDx | -cos(alpha) * sin(gamma) - sin(alpha) * cos(beta) * cos(gamma) | ------ = | -cos(alpha) * cos(gamma) + sin(alpha) * cos(beta) * sin(gamma) | dalpha | -sin(alpha) * sin(beta) | The beta partial derivative of the unit Dx vector is: dDx | -cos(alpha) * sin(beta) * cos(gamma) | ----- = | cos(alpha) * sin(beta) * sin(gamma) | dbeta | cos(alpha) * cos(beta) | The gamma partial derivative of the unit Dx vector is: dDx | -sin(alpha) * cos(gamma) - cos(alpha) * cos(beta) * sin(gamma) | ------ = | sin(alpha) * sin(gamma) - cos(alpha) * cos(beta) * cos(gamma) | dgamma | 0 | Dy gradientThe alpha partial derivative of the unit Dy vector is: dDy | -sin(alpha) * sin(gamma) + cos(alpha) * cos(beta) * cos(gamma) | ------ = | -sin(alpha) * cos(gamma) - cos(alpha) * cos(beta) * sin(gamma) | dalpha | cos(alpha) * sin(beta) | The beta partial derivative of the unit Dy vector is: dDy | -sin(alpha) * sin(beta) * cos(gamma) | ----- = | sin(alpha) * sin(beta) * sin(gamma) | dbeta | sin(alpha) * cos(beta) | The gamma partial derivative of the unit Dy vector is: dDy | cos(alpha) * cos(gamma) - sin(alpha) * cos(beta) * sin(gamma) | ------ = | -cos(alpha) * sin(gamma) - sin(alpha) * cos(beta) * cos(gamma) | dgamma | 0 | Dz gradientThe alpha partial derivative of the unit Dz vector is: dDz | 0 | ------ = | 0 | dalpha | 0 | The beta partial derivative of the unit Dz vector is: dDz | -cos(beta) * cos(gamma) | ----- = | cos(beta) * sin(gamma) | dbeta | -sin(beta) | The gamma partial derivative of the unit Dz vector is: dDz | sin(beta) * sin(gamma) | ------ = | sin(beta) * cos(gamma) | dgamma | 0 | |
Function for calculating the second partial derivatives of the direction cosines dx, dy, dz. Dx HessianThe alpha-alpha second partial derivative of the unit Dx vector is: d2Dx | sin(alpha) * sin(gamma) - cos(alpha) * cos(beta) * cos(gamma) | ------- = | sin(alpha) * cos(gamma) + cos(alpha) * cos(beta) * sin(gamma) | dalpha2 | -cos(alpha) * sin(beta) | The alpha-beta second partial derivative of the unit Dx vector is: d2Dx | sin(alpha) * sin(beta) * cos(gamma) | ------------ = | -sin(alpha) * sin(beta) * sin(gamma) | dalpha.dbeta | -sin(alpha) * cos(beta) | The alpha-gamma second partial derivative of the unit Dx vector is: d2Dx | -cos(alpha) * cos(gamma) + sin(alpha) * cos(beta) * sin(gamma) | ------------- = | cos(alpha) * sin(gamma) + sin(alpha) * cos(beta) * cos(gamma) | dalpha.dgamma | 0 | The beta-beta second partial derivative of the unit Dx vector is: d2Dx | -cos(alpha) * cos(beta) * cos(gamma) | ------ = | cos(alpha) * cos(beta) * sin(gamma) | dbeta2 | -cos(alpha) * sin(beta) | The beta-gamma second partial derivative of the unit Dx vector is: d2Dx | cos(alpha) * sin(beta) * sin(gamma) | ------------ = | cos(alpha) * sin(beta) * cos(gamma) | dbeta.dgamma | 0 | The gamma-gamma second partial derivative of the unit Dx vector is: d2Dx | sin(alpha) * sin(gamma) - cos(alpha) * cos(beta) * cos(gamma) | ------- = | sin(alpha) * cos(gamma) + cos(alpha) * cos(beta) * sin(gamma) | dgamma2 | 0 | Dy HessianThe alpha-alpha second partial derivative of the unit Dy vector is: d2Dy | -cos(alpha) * sin(gamma) - sin(alpha) * cos(beta) * cos(gamma) | ------- = | -cos(alpha) * cos(gamma) + sin(alpha) * cos(beta) * sin(gamma) | dalpha2 | -sin(alpha) * sin(beta) | The alpha-beta second partial derivative of the unit Dy vector is: d2Dy | -cos(alpha) * sin(beta) * cos(gamma) | ------------ = | cos(alpha) * sin(beta) * sin(gamma) | dalpha.dbeta | cos(alpha) * cos(beta) | The alpha-gamma second partial derivative of the unit Dy vector is: d2Dy | -sin(alpha) * cos(gamma) - cos(alpha) * cos(beta) * sin(gamma) | ------------- = | sin(alpha) * sin(gamma) - cos(alpha) * cos(beta) * cos(gamma) | dalpha.dgamma | 0 | The beta-beta second partial derivative of the unit Dy vector is: d2Dy | -sin(alpha) * cos(beta) * cos(gamma) | ------ = | sin(alpha) * cos(beta) * sin(gamma) | dbeta2 | -sin(alpha) * sin(beta) | The beta-gamma second partial derivative of the unit Dy vector is: d2Dy | sin(alpha) * sin(beta) * sin(gamma) | ------------ = | sin(alpha) * sin(beta) * cos(gamma) | dbeta.dgamma | 0 | The gamma-gamma second partial derivative of the unit Dy vector is: d2Dy | -cos(alpha) * sin(gamma) - sin(alpha) * cos(beta) * cos(gamma) | ------- = | -cos(alpha) * cos(gamma) + sin(alpha) * cos(beta) * sin(gamma) | dgamma2 | 0 | Dz HessianThe alpha-alpha second partial derivative of the unit Dz vector is: d2Dz | 0 | ------- = | 0 | dalpha2 | 0 | The alpha-beta second partial derivative of the unit Dz vector is: d2Dz | 0 | ------------ = | 0 | dalpha.dbeta | 0 | The alpha-gamma second partial derivative of the unit Dz vector is: d2Dz | 0 | ------------- = | 0 | dalpha.dgamma | 0 | The beta-beta second partial derivative of the unit Dz vector is: d2Dz | sin(beta) * cos(gamma) | ------ = | -sin(beta) * sin(gamma) | dbeta2 | -cos(beta) | The beta-gamma second partial derivative of the unit Dz vector is: d2Dz | cos(beta) * sin(gamma) | ------------ = | cos(beta) * cos(gamma) | dbeta.dgamma | 0 | The gamma-gamma second partial derivative of the unit Dz vector is: d2Dz | sin(beta) * cos(gamma) | ------- = | -sin(beta) * sin(gamma) | dgamma2 | 0 | |
Trees | Indices | Help |
|
---|
Generated by Epydoc 3.0.1 on Wed Apr 10 13:30:29 2013 | http://epydoc.sourceforge.net |