| 
  | __init__(self,
        model=None,
        init_params=None,
        full_tensors=None,
        red_tensors=None,
        red_errors=None,
        full_in_ref_frame=None,
        frame_order_2nd=None)
    (Constructor)
 | source code |  Set up the target functions for the Frame Order theories. 
    Parameters:
        model(str) - The name of the Frame Order model.init_params(numpy float64 array) - The initial parameter values.full_tensors(numpy nx5D, rank-1 float64 array) - An array of the {Sxx, Syy, Sxy, Sxz, Syz} values for all full 
          alignment tensors.  The format is [Sxx1, Syy1, Sxy1, Sxz1, Syz1, 
          Sxx2, Syy2, Sxy2, Sxz2, Syz2, ..., Sxxn, Syyn, Sxyn, Sxzn, Syzn].red_tensors(numpy nx5D, rank-1 float64 array) - An array of the {Sxx, Syy, Sxy, Sxz, Syz} values for all reduced 
          tensors.  The array format is the same as for full_tensors.red_errors(numpy nx5D, rank-1 float64 array) - An array of the {Sxx, Syy, Sxy, Sxz, Syz} errors for all reduced 
          tensors.  The array format is the same as for full_tensors.full_in_ref_frame(numpy rank-1 array) - An array of flags specifying if the tensor in the reference frame
          is the full or reduced tensor.frame_order_2nd(None or numpy 9D, rank-2 array) - The numerical values of the 2nd degree Frame Order matrix.  If 
          supplied, the target functions will optimise directly to these 
          values. |