| Trees | Indices | Help | 
 | 
|---|
|  | 
| 
 | |||
| 
 | |||
| 
 | |||
| 
 | |||
| 
 | |||
| 
 | |||
| 
 | |||
| 
 | |||
| 
 | |||
| __package__ =  | |||
Imports: sqrt, outer
| 
 | |||
| 
 Weight for spherical diffusion. The equation is: c0 = 1. | 
| 
 Weights for spheroidal diffusion. The equations are: c-1 = 1/4 (3dz**2 - 1)**2, c0 = 3dz**2 (1 - dz**2), c1 = 3/4 (dz**2 - 1)**2, where dz is the direction cosine of the unit bond vector along the z-axis of the diffusion tensor which is calculated as the dot product of the unit bond vector with a unit vector along Dpar. | 
| 
 Weight gradient for spheroidal diffusion. The equations are: dc-1 ddz ---- = 3dz (3dz**2 - 1) --- , dOi dOi dc0 ddz --- = 6dz (1 - 2dz**2) --- , dOi dOi dc1 ddz --- = 3dz (dz**2 - 1) --- , dOi dOi where the orientation parameter set O is {theta, phi}. | 
| 
 Weight Hessian for spheroidal diffusion. The equations are: 
    d2c-1        /             ddz   ddz                      d2dz   \ 
   -------  =  3 |(9dz**2 - 1) --- . ---  +  dz (3dz**2 - 1) ------- | ,
   dOi.dOj       \             dOi   dOj                     dOi.dOj /
    d2c0         /             ddz   ddz                      d2dz   \ 
   -------  =  6 |(1 - 6dz**2) --- . ---  +  dz (1 - 2dz**2) ------- | ,
   dOi.dOj       \             dOi   dOj                     dOi.dOj /
    d2c1         /             ddz   ddz                     d2dz   \ 
   -------  =  3 |(3dz**2 - 1) --- . ---  +  dz (dz**2 - 1) ------- | ,
   dOi.dOj       \             dOi   dOj                    dOi.dOj /
where the orientation parameter set O is {theta, phi}. | 
| 
 Weight equations for ellipsoidal diffusion. The equations are: c-2 = 1/4 (d - e), c-1 = 3dy**2.dz**2, c0 = 3dx**2.dz**2, c1 = 3dx**2.dy**2, c2 = 1/4 (d + e), where: 
   d  = 3(dx**4 + dy**4 + dz**4) - 1,
   e  =  1/R [(1 + 3Dr)(dx**4 + 2dy**2.dz**2) + (1 - 3Dr)(dy**4 + 2dx**2.dz**2)
              - 2(dz**4 + 2dx**2.dy**2)],
and where the factor R is defined as: 
        ___________
   R = V 1 + 3Dr**2.
dx, dy, and dz are the direction cosines of the XH bond vector along the x, y, and z-axes of the diffusion tensor, calculated as the dot product of the unit bond vector and the unit vectors along Dx, Dy, and Dz respectively. | 
| 
 Weight gradient for ellipsoidal diffusion. Oi partial derivativesThe equations are: dc-2 / ddx ddy ddz \ de ---- = 3 | dx**3 --- + dy**3 --- + dz**3 --- | - --- , dOi \ dOi dOi dOi / dOi dc-1 / ddz ddy \ ---- = 6dy.dz | dy --- + dz --- | , dOi \ dOi dOi / dc0 / ddz ddx \ --- = 6dx.dz | dx --- + dz --- | , dOi \ dOi dOi / dc1 / ddy ddx \ --- = 6dx.dy | dx --- + dy --- | , dOi \ dOi dOi / dc2 / ddx ddy ddz \ de --- = 3 | dx**3 --- + dy**3 --- + dz**3 --- | + --- , dOi \ dOi dOi dOi / dOi where: 
   de      1 /           /      ddx           /    ddz        ddy \ \ 
   ---  =  - | (1 + 3Dr) |dx**3 ---  +  dy.dz | dy ---  +  dz --- | |
   dOi     R \           \      dOi           \    dOi        dOi / /
                         /       ddy           /    ddz        ddx \ \ 
             + (1 - 3Dr) | dy**3 ---  +  dx.dz | dx ---  +  dz --- | |
                         \       dOi           \    dOi        dOi / /
                 /       ddz           /    ddy        ddx \ \ \ 
             - 2 | dz**3 ---  +  dx.dy | dx ---  +  dy --- | | | ,
                 \       dOi           \    dOi        dOi / / /
and where the orietation parameter set O is: 
   O = {alpha, beta, gamma}.
tm partial derivativesThe equations are: dc-2 ---- = 0, dtm dc-1 ---- = 0, dtm dc0 --- = 0, dtm dc1 --- = 0, dtm dc2 --- = 0. dtm Da partial derivativesThe equations are: dc-2 ---- = 0, dDa dc-1 ---- = 0, dDa dc0 --- = 0, dDa dc1 --- = 0, dDa dc2 --- = 0. dDa Dr partial derivativesThe equations are: dc-2 3 de ---- = - - ---, dDr 4 dDr dc-1 ---- = 0, dDr dc0 --- = 0, dDr dc1 --- = 0, dDr dc2 3 de --- = - ---, dDr 4 dDr where: de 1 / \ --- = ---- | (1 - Dr) (dx**4 + 2dy**2.dz**2) - (1 + Dr) (dy**4 + 2dx**2.dz**2) + 2Dr (dz**4 + 2dx**2.dy**2) | . dDr R**3 \ / | 
| 
 Weight Hessian for ellipsoidal diffusion. Oi-Oj partial derivativesThe equations are: 
    d2c-2        /       /     d2dx       ddx   ddx \           /     d2dy       ddy   ddy \           /     d2dz       ddz   ddz \ \       d2e
   -------  =  3 | dx**2 | dx ------- + 3 --- . --- |  +  dy**2 | dy ------- + 3 --- . --- |  +  dz**2 | dz ------- + 3 --- . --- | |  -  ------- ,
   dOi.dOj       \       \    dOi.dOj     dOi   dOj /           \    dOi.dOj     dOi   dOj /           \    dOi.dOj     dOi   dOj / /     dOi.dOj
    d2c-1              /     d2dz       ddz   ddz \              / ddy   ddz     ddz   ddy \             /     d2dy       ddy   ddy \ 
   -------  =  6 dy**2 | dz -------  +  --- . --- |  +  12 dy.dz | --- . ---  +  --- . --- |  +  6 dz**2 | dy -------  +  --- . --- | ,
   dOi.dOj             \    dOi.dOj     dOi   dOj /              \ dOi   dOj     dOi   dOj /             \    dOi.dOj     dOi   dOj /
    d2c0               /     d2dz       ddz   ddz \              / ddx   ddz     ddz   ddx \             /     d2dx       ddx   ddx \ 
   -------  =  6 dx**2 | dz -------  +  --- . --- |  +  12 dx.dz | --- . ---  +  --- . --- |  +  6 dz**2 | dx -------  +  --- . --- | ,
   dOi.dOj             \    dOi.dOj     dOi   dOj /              \ dOi   dOj     dOi   dOj /             \    dOi.dOj     dOi   dOj /
    d2c1               /     d2dy       ddy   ddy \              / ddx   ddy     ddy   ddx \             /     d2dx       ddx   ddx \ 
   -------  =  6 dx**2 | dy -------  +  --- . --- |  +  12 dx.dy | --- . ---  +  --- . --- |  +  6 dy**2 | dx -------  +  --- . --- | ,
   dOi.dOj             \    dOi.dOj     dOi   dOj /              \ dOi   dOj     dOi   dOj /             \    dOi.dOj     dOi   dOj /
    d2c2         /       /     d2dx       ddx   ddx \           /     d2dy       ddy   ddy \           /     d2dz       ddz   ddz \ \       d2e
   -------  =  3 | dx**2 | dx ------- + 3 --- . --- |  +  dy**2 | dy ------- + 3 --- . --- |  +  dz**2 | dz ------- + 3 --- . --- | |  +  ------- ,
   dOi.dOj       \       \    dOi.dOj     dOi   dOj /           \    dOi.dOj     dOi   dOj /           \    dOi.dOj     dOi   dOj / /     dOi.dOj
where: 
     d2e       1 /           /       /     d2dx       ddx   ddx \           /     d2dz       ddz   ddz \ 
   -------  =  - | (1 + 3Dr) | dx**2 | dx ------- + 3 --- . --- |  +  dy**2 | dz -------  +  --- . --- |
   dOi.dOj     R \           \       \    dOi.dOj     dOi   dOj /           \    dOi.dOj     dOi   dOj / 
                                     /     d2dy       ddy   ddy \            / ddy   ddz     ddz   ddy \ \ 
                             + dz**2 | dy -------  +  --- . --- |  +  2dy.dz | --- . ---  +  --- . --- | |
                                     \    dOi.dOj     dOi   dOj /            \ dOi   dOj     dOi   dOj / /
                             /       /     d2dy       ddy   ddy \           /     d2dz       ddz   ddz \ 
                 + (1 - 3Dr) | dy**2 | dy ------- + 3 --- . --- |  +  dx**2 | dz -------  +  --- . --- |
                             \       \    dOi.dOj     dOi   dOj /           \    dOi.dOj     dOi   dOj / 
                                     /     d2dx       ddx   ddx \            / ddx   ddz     ddz   ddx \ \ 
                             + dz**2 | dx -------  +  --- . --- |  +  2dx.dz | --- . ---  +  --- . --- | |
                                     \    dOi.dOj     dOi   dOj /            \ dOi   dOj     dOi   dOj / /
                     /       /     d2dz       ddz   ddz \           /     d2dy       ddy   ddy \ 
                 - 2 | dz**2 | dz ------- + 3 --- . --- |  +  dx**2 | dy -------  +  --- . --- |
                     \       \    dOi.dOj     dOi   dOj /           \    dOi.dOj     dOi   dOj / 
                             /     d2dx       ddx   ddx \            / ddx   ddy     ddy   ddx \ \ \ 
                     + dy**2 | dx -------  +  --- . --- |  +  2dx.dy | --- . ---  +  --- . --- | | |
                             \    dOi.dOj     dOi   dOj /            \ dOi   dOj     dOi   dOj / / /
Oi-tm partial derivativesThe equations are: 
    d2c-2
   -------  =  0,
   dOi.dtm
    d2c-1
   -------  =  0,
   dOi.dtm
    d2c0
   -------  =  0,
   dOi.dtm
    d2c1
   -------  =  0,
   dOi.dtm
    d2c2
   -------  =  0.
   dOi.dtm
Oi-Da partial derivativesThe equations are: 
    d2c-2
   -------  =  0,
   dOi.dDa
    d2c-1
   -------  =  0,
   dOi.dDa
    d2c0
   -------  =  0,
   dOi.dDa
    d2c1
   -------  =  0,
   dOi.dDa
    d2c2
   -------  =  0.
   dOi.dDa
Oi-Dr partial derivativesThe equations are: 
    d2c-2            d2e
   -------  =  - 3 -------,
   dOi.dDr         dOi.dDr
    d2c-1
   -------  =  0,
   dOi.dDr
    d2c0
   -------  =  0,
   dOi.dDr
    d2c1
   -------  =  0,
   dOi.dDr
    d2c2           d2e
   -------  =  3 -------,
   dOi.dDr       dOi.dDr
where: 
    d2e         1   /          /       ddx           /    ddz        ddy \ \ 
   -------  =  ---- | (1 - Dr) | dx**3 ---  +  dy.dz | dy ---  +  dz --- | |
   dOi.dDr     R**3 \          \       dOi           \    dOi        dOi / /
                               /       ddy           /    ddz        ddx \ \ 
                    - (1 + Dr) | dy**3 ---  +  dx.dz | dx ---  +  dz --- | |
                               \       dOi           \    dOi        dOi / /
                          /       ddz           /    ddy        ddx \ \ \ 
                    + 2Dr | dz**3 ---  +  dx.dy | dx ---  +  dy --- | | |
                          \       dOi           \    dOi        dOi / / /
tm-tm partial derivativesThe equations are: d2c-2 ----- = 0, dtm2 d2c-1 ----- = 0, dtm2 d2c0 ---- = 0, dtm2 d2c1 ---- = 0, dtm2 d2c2 ---- = 0. dtm2 tm-Da partial derivativesThe equations are: 
    d2c-2
   -------  =  0,
   dtm.dDa
    d2c-1
   -------  =  0,
   dtm.dDa
    d2c0
   -------  =  0,
   dtm.dDa
    d2c1
   -------  =  0,
   dtm.dDa
    d2c2
   -------  =  0.
   dtm.dDa
tm-Dr partial derivativesThe equations are: 
    d2c-2
   -------  =  0,
   dtm.dDr
    d2c-1
   -------  =  0,
   dtm.dDr
    d2c0
   -------  =  0,
   dtm.dDr
    d2c1
   -------  =  0,
   dtm.dDr
    d2c2
   -------  =  0.
   dtm.dDr
Da-Da partial derivativesThe equations are: 
   d2c-2
   ------  =  0,
   dDa**2
   d2c-1
   ------  =  0,
   dDa**2
    d2c0
   ------  =  0,
   dDa**2
    d2c1
   ------  =  0,
   dDa**2
    d2c2
   ------  =  0.
   dDa**2
Da-Dr partial derivativesThe equations are: 
    d2c-2
   -------  =  0,
   dDa.dDr
    d2c-1
   -------  =  0,
   dDa.dDr
    d2c0
   -------  =  0,
   dDa.dDr
    d2c1
   -------  =  0,
   dDa.dDr
    d2c2
   -------  =  0.
   dDa.dDr
Dr-Dr partial derivativesThe equations are: 
   d2c-2        3  d2e
   ------  =  - - ------,
   dDr**2       4 dDr**2
   d2c-1
   ------  =  0,
   dDr**2
    d2c0
   ------  =  0,
   dDr**2
    d2c1
   ------  =  0,
   dDr**2
    d2c2      3  d2e
   ------  =  - ------,
   dDr**2     4 dDr**2
where: 
    d2e        1   /                                                                                                                           \ 
   ------  =  ---- | (6Dr**2 - 9Dr - 1)(dx**4 + 2dy**2.dz**2) + (6Dr**2 + 9Dr - 1)(dy**4 + 2dx**2.dz**2) - 2(6Dr**2 - 1)(ddz*4 + 2dx**2.dy**2) |
   dDr**2     R**5 \                                                                                                                           /
 | 
| Trees | Indices | Help | 
 | 
|---|
| Generated by Epydoc 3.0.1 on Wed Apr 10 13:30:30 2013 | http://epydoc.sourceforge.net |