Trees | Indices | Help |
|
---|
|
Testing functions.
This file is part of the minfx optimisation library.
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|
|||
__package__ =
|
Imports: cos, pi, sin, sqrt, array, float64, more_thuente
|
Test function 1. From More, J. J., and Thuente, D. J. 1994, Line search algorithms with guaranteed sufficient decrease. ACM Trans. Math. Softw. 20, 286-307. The function is: alpha phi(alpha) = - --------------- alpha**2 + beta |
Derivative of test function 1. From More, J. J., and Thuente, D. J. 1994, Line search algorithms with guaranteed sufficient decrease. ACM Trans. Math. Softw. 20, 286-307. The gradient is: 2*alpha**2 1 phi'(alpha) = -------------------- - --------------- (alpha**2 + beta)**2 alpha**2 + beta |
Test function 2. From More, J. J., and Thuente, D. J. 1994, Line search algorithms with guaranteed sufficient decrease. ACM Trans. Math. Softw. 20, 286-307. The function is: phi(alpha) = (alpha + beta)**5 - 2(alpha + beta)**4 |
Derivative of test function 2. From More, J. J., and Thuente, D. J. 1994, Line search algorithms with guaranteed sufficient decrease. ACM Trans. Math. Softw. 20, 286-307. The gradient is: phi'(alpha) = 5(alpha + beta)**4 - 8(alpha + beta)**3 |
Test function 3. From More, J. J., and Thuente, D. J. 1994, Line search algorithms with guaranteed sufficient decrease. ACM Trans. Math. Softw. 20, 286-307. The function is: 2(1 - beta) / l*pi \ phi(alpha) = phi0(alpha) + ----------- . sin | ---- . alpha | l*pi \ 2 / where: / 1 - alpha, if alpha <= 1 - beta, | | alpha - 1, if alpha >= 1 + beta, phi0(alpha) = < | 1 1 | ------(alpha - 1)**2 + - beta, if alpha in [1 - beta, 1 + beta]. \ 2*beta 2 |
Derivative of test function 3. From More, J. J., and Thuente, D. J. 1994, Line search algorithms with guaranteed sufficient decrease. ACM Trans. Math. Softw. 20, 286-307. The gradient is: / l*pi \ phi(alpha) = phi0'(alpha) + (1 - beta) . cos | ---- . alpha | \ 2 / where: / -1, if alpha <= 1 - beta, | | 1, if alpha >= 1 + beta, phi0'(alpha) = < | alpha - 1 | ---------, if alpha in [1 - beta, 1 + beta]. \ beta |
Test functions 4, 5, and 6. From More, J. J., and Thuente, D. J. 1994, Line search algorithms with guaranteed sufficient decrease. ACM Trans. Math. Softw. 20, 286-307. The function is: phi(alpha) = gamma(beta1) * sqrt((1 - alpha)**2 + beta2**2) + gamma(beta2) * sqrt(alpha**2 + beta1**2) where: gamma(beta) = sqrt(1 + beta**2) - beta |
Test functions 4, 5, and 6. From More, J. J., and Thuente, D. J. 1994, Line search algorithms with guaranteed sufficient decrease. ACM Trans. Math. Softw. 20, 286-307. The function is: (1 - alpha) phi'(alpha) = - gamma(beta1) * ------------------------------- sqrt((1 - alpha)**2 + beta2**2) a + gamma(beta2) * ------------------------- sqrt(alpha**2 + beta1**2) where: gamma(beta) = sqrt(1 + beta**2) - beta |
Trees | Indices | Help |
|
---|
Generated by Epydoc 3.0.1 on Wed Apr 10 13:30:30 2013 | http://epydoc.sourceforge.net |