| 
  | log_barrier_function(func=None,
        dfunc=None,
        d2func=None,
        args=(),
        x0=None,
        min_options=(),
        A=None,
        b=None,
        epsilon0=0.01,
        scale_epsilon=0.01,
        func_tol=1e-25,
        grad_tol=None,
        maxiter=1000000.0,
        inner_maxiter=500,
        full_output=0,
        print_flag=0) | source code |  The logarithmic barrier augmented function. From http://en.wikipedia.org/wiki/Barrier_function and http://bayen.eecs.berkeley.edu/bayen/?q=webfm_send/247.
  This is an augmented function, the algorithm is: 
    
      Given starting points x0s.
    
      while 1:
      
        
          Find an approximate minimiser xk of the target function value 
          plus the logarithmic barrier function value.
        
          Final convergence test.
        
          Scale the penalty function scaling factor epsilon.
        
          k = k + 1.
         Linear constraintsThese are defined as: 
   A.x >= b
 where: 
      
        A is an m*n matrix where the rows are the transposed vectors, ai, 
        of length n.  The elements of ai are the coefficients of the model 
        parameters.
      
        x is the vector of model parameters of dimension n.
      
        b is the vector of scalars of dimension m.
      
        m is the number of constraints.
      
        n is the number of model parameters.
       E.g. if 0 <= q <= 1, q >= 1 - 2r, and 0 <= r, then: 
   | 1  0 |            |  0 |
   |      |            |    |
   |-1  0 |   | q |    | -1 |
   |      | . |   | >= |    |
   | 1  2 |   | r |    |  1 |
   |      |            |    |
   | 0  1 |            |  2 |
 To use linear constraints both the matrix A and vector b need to be 
    supplied. Initial valuesThese are the default initial values: 
   epsilon0 = 1e-2
   scale_epsilon = 1e-2
 
   |