Trees | Indices | Help |
|
---|
|
Class for manipulating the alignment tensor.
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
Inherited from |
|
Function for copying alignment tensor data. Keyword Arguments ~~~~~~~~~~~~~~~~~ tensor_from: The identification string of the alignment tensor to copy the data from. pipe_from: The name of the data pipe to copy the alignment tensor data from. tensor_to: The identification string of the alignment tensor to copy the data to. pipe_to: The name of the data pipe to copy the alignment tensor data to. Description ~~~~~~~~~~~ This function will copy the alignment tensor data to a new tensor or a new data pipe. The destination data pipe must not contain any alignment tensor data corresponding to the tensor_to label. If the pipe_from or pipe_to arguments are not supplied, then both will default to the current data pipe. Both the tensor_from and tensor_to arguments must be supplied. Examples ~~~~~~~~ To copy the alignment tensor data corresponding to 'Pf1' from the data pipe 'old' to the current data pipe, type one of: relax> align_tensor.copy('Pf1', 'old') relax> align_tensor.copy(tensor_from='Pf1', pipe_from='old') To copy the alignment tensor data corresponding to 'Otting' from the current data pipe to the data pipe new, type one of: relax> align_tensor.copy('Otting', pipe_to='new') relax> align_tensor.copy(tensor_from='Otting', pipe_to='new') To copy the alignment tensor data of 'Otting' to that of 'Otting new', type one of: relax> align_tensor.copy('Otting', tensor_to='Otting new') relax> align_tensor.copy(tensor_from='Pf1', tensor_to='Otting new') |
Function for deleting alignment tensor data. Keyword Arguments ~~~~~~~~~~~~~~~~~ tensor: The alignment tensor identification string. Description ~~~~~~~~~~~ This function will delete the specified alignment tensor data from the current data pipe. |
Function for displaying the alignment tensor information. Keyword Arguments ~~~~~~~~~~~~~~~~~ tensor: The alignment tensor identification string. |
Fix all alignment tensors so that they do not change during optimisation. Keyword Arguments ~~~~~~~~~~~~~~~~~ id: The alignment tensor identification string. fixed: The flag specifying if the tensors should be fixed or variable. Description ~~~~~~~~~~~ If the ID string is left unset, then all alignment tensors will be fixed. |
Function for initialising the alignment tensor. Keyword Arguments ~~~~~~~~~~~~~~~~~ tensor: The alignment tensor identification string. params: The alignment tensor data. scale: The alignment tensor eigenvalue scaling value. angle_units: The units for the angle parameters. param_types: A flag to select different parameter combinations. errors: A flag which determines if the alignment tensor data or its errors are being input. Description ~~~~~~~~~~~ Using this function, the alignment tensor data can be set up. The params argument should be a tuple of floating point numbers (a list surrounded by round brakets). These correspond to the parameters of the tensor, which can be specified by the param_types argument, where the values correspond to 0: {Sxx, Syy, Sxy, Sxz, Syz} (unitless), 1: {Szz, Sxx-yy, Sxy, Sxz, Syz} (Pales default format), 2: {Axx, Ayy, Axy, Axz, Ayz} (unitless), 3: {Azz, Axx-yy, Axy, Axz, Ayz} (unitless), 4: {Axx, Ayy, Axy, Axz, Ayz} (units of Hertz), 5: {Azz, Axx-yy, Axy, Axz, Ayz} (units of Hertz), 6: {Pxx, Pyy, Pxy, Pxz, Pyz} (unitless), 7: {Pzz, Pxx-yy, Pxy, Pxz, Pyz} (unitless), Other formats may be added later. The relationship between the Saupe order matrix S and the alignment tensor A is S = 3/2 A. The probability matrix P is related to the alignment tensor A by A = P - 1/3 I, where I is the identity matrix. For the alignment tensor to be supplied in Hertz, the bond vectors must all be of equal length. Examples ~~~~~~~~ To set a rhombic tensor to the run 'CaM', type one of: relax> align_tensor.init('super media', (-8.6322e-05, -5.5786e-04, -3.1732e-05, 2.2927e-05, 2.8599e-04), param_types=1) relax> align_tensor.init(tensor='super media', params=(-8.6322e-05, -5.5786e-04, -3.1732e-05, 2.2927e-05, 2.8599e-04), param_types=1) |
Function for calculating the 5D angles between all alignment tensors. Keyword Arguments ~~~~~~~~~~~~~~~~~ basis_set: The basis set to operate with. tensors: A list of the tensors to apply the calculation to. If None, all tensors are used. Description ~~~~~~~~~~~ This function will calculate the angles between all loaded alignment tensors for the current data pipe. The matrices are first converted to a 5D vector form and then then angles are calculated. The angles are dependent on the basis set. If the basis_set argument is set to the default of 0, the vectors {Sxx, Syy, Sxy, Sxz, Syz} are used. If the basis_set argument is set to 1, the vectors {Szz, Sxxyy, Sxy, Sxz, Syz} are used instead. |
Specify that one tensor is a reduction of another. Keyword Arguments ~~~~~~~~~~~~~~~~~ full_tensor: The full alignment tensor. red_tensor: The reduce alignment tensor. Description ~~~~~~~~~~~ Prior to optimisation of the N-state model and Frame Order theories using alignment tensors, which tensor is a reduction of which other tensor must be specified through this user function. Examples ~~~~~~~~ To state that the alignment tensor loaded as 'chi3 C-dom' is a reduction of 'chi3 N-dom', type: relax> align_tensor.reduction(full_tensor='chi3 N-dom', red_tensor='chi3 C-dom') |
Set the domain label for the alignment tensor. Keyword Arguments ~~~~~~~~~~~~~~~~~ tensor: The alignment tensor to assign the domain label to. domain: The domain label. Description ~~~~~~~~~~~ Prior to optimisation of the N-state model or Frame Order theories, the domain to which each alignment tensor belongs must be specified. Examples ~~~~~~~~ To link the alignment tensor loaded as 'chi3 C-dom' to the C-terminal domain 'C', type: relax> align_tensor.set_domain(tensor='chi3 C-dom', domain='C') |
Function for calculating the singular values for all tensors and the condition number. Keyword Arguments ~~~~~~~~~~~~~~~~~ basis_set: The basis set to operate with. tensors: A list of the tensors to apply the calculation to. If None, all tensors are used. Description ~~~~~~~~~~~ This function will, using SVD, calculate the singular values of all tensors loaded for the current data pipe. If the basis_set argument is set to the default of 0, the matrix on which SVD will be performed is composed of the unitary basis set {Sxx, Syy, Sxy, Sxz, Syz} layed out as: ----- | Sxx1 Syy1 Sxy1 Sxz1 Syz1 | | Sxx2 Syy2 Sxy2 Sxz2 Syz2 | | Sxx3 Syy3 Sxy3 Sxz3 Syz3 | | . . . . . | | . . . . . | | . . . . . | | SxxN SyyN SxyN SxzN SyzN | ----- If basis_set is set to 1, the geometric basis set consisting of the stretching and skewing parameters Szz and Sxx-yy respectively {Szz, Sxxyy, Sxy, Sxz, Syz} will be used instead. The matrix is: ----- | Szz1 Sxxyy1 Sxy1 Sxz1 Syz1 | | Szz2 Sxxyy2 Sxy2 Sxz2 Syz2 | | Szz3 Sxxyy3 Sxy3 Sxz3 Syz3 | | . . . . . | | . . . . . | | . . . . . | | SzzN SxxyyN SxyN SxzN SyzN | ----- The relationships between the geometric and unitary basis sets are: ----- Szz = - Sxx - Syy, Sxxyy = Sxx - Syy, ----- The SVD values and condition number are dependendent upon the basis set chosen. |
Trees | Indices | Help |
|
---|
Generated by Epydoc 3.0.1 on Wed Apr 10 13:31:50 2013 | http://epydoc.sourceforge.net |