1   
  2   
  3   
  4   
  5   
  6   
  7   
  8   
  9   
 10   
 11   
 12   
 13   
 14   
 15   
 16   
 17   
 18   
 19   
 20   
 21   
 22   
 23  """Module for the handling of Frame Order.""" 
 24   
 25   
 26  import dep_check 
 27   
 28   
 29  from math import cos, pi, sqrt 
 30  if dep_check.scipy_module: 
 31      from scipy.integrate import dblquad 
 32   
 33   
 34  from lib.frame_order.matrix_ops import pcs_pivot_motion_torsionless, pcs_pivot_motion_torsionless_qrint, rotate_daeg 
 35   
 36   
 38      """Generate the rotated 2nd degree Frame Order matrix for the torsionless isotropic cone. 
 39   
 40      The cone axis is assumed to be parallel to the z-axis in the eigenframe. 
 41   
 42   
 43      @param matrix:      The Frame Order matrix, 2nd degree to be populated. 
 44      @type matrix:       numpy 9D, rank-2 array 
 45      @param Rx2_eigen:   The Kronecker product of the eigenframe rotation matrix with itself. 
 46      @type Rx2_eigen:    numpy 9D, rank-2 array 
 47      @param cone_theta:  The cone opening angle. 
 48      @type cone_theta:   float 
 49      """ 
 50   
 51       
 52      for i in range(9): 
 53          for j in range(9): 
 54              matrix[i, j] = 0.0 
 55   
 56       
 57      cos_tmax = cos(cone_theta) 
 58      cos_tmax2 = cos_tmax**2 
 59   
 60       
 61      matrix[0, 0] = (3.0*cos_tmax2 + 6.0*cos_tmax + 15.0) / 24.0 
 62      matrix[1, 1] = (cos_tmax2 + 10.0*cos_tmax + 13.0) / 24.0 
 63      matrix[2, 2] = (4.0*cos_tmax2 + 10.0*cos_tmax + 10.0) / 24.0 
 64      matrix[3, 3] = matrix[1, 1] 
 65      matrix[4, 4] = matrix[0, 0] 
 66      matrix[5, 5] = matrix[2, 2] 
 67      matrix[6, 6] = matrix[2, 2] 
 68      matrix[7, 7] = matrix[2, 2] 
 69      matrix[8, 8] = (cos_tmax2 + cos_tmax + 1.0) / 3.0 
 70   
 71       
 72      matrix[0, 4] = matrix[4, 0] = (cos_tmax2 - 2.0*cos_tmax + 1.0) / 24.0 
 73      matrix[0, 8] = matrix[8, 0] = -(cos_tmax2 + cos_tmax - 2.0) / 6.0 
 74      matrix[4, 8] = matrix[8, 4] = matrix[0, 8] 
 75   
 76       
 77      matrix[1, 3] = matrix[3, 1] = matrix[0, 4] 
 78      matrix[2, 6] = matrix[6, 2] = -matrix[0, 8] 
 79      matrix[5, 7] = matrix[7, 5] = -matrix[0, 8] 
 80   
 81       
 82      return rotate_daeg(matrix, Rx2_eigen) 
  83   
 84   
 86      """Determine the averaged PCS value via numerical integration. 
 87   
 88      @keyword theta_max:     The half cone angle. 
 89      @type theta_max:        float 
 90      @keyword c:             The PCS constant (without the interatomic distance and in Angstrom units). 
 91      @type c:                float 
 92      @keyword r_pivot_atom:  The pivot point to atom vector. 
 93      @type r_pivot_atom:     numpy rank-1, 3D array 
 94      @keyword r_ln_pivot:    The lanthanide position to pivot point vector. 
 95      @type r_ln_pivot:       numpy rank-1, 3D array 
 96      @keyword A:             The full alignment tensor of the non-moving domain. 
 97      @type A:                numpy rank-2, 3D array 
 98      @keyword R_eigen:       The eigenframe rotation matrix. 
 99      @type R_eigen:          numpy rank-2, 3D array 
100      @keyword RT_eigen:      The transpose of the eigenframe rotation matrix (for faster calculations). 
101      @type RT_eigen:         numpy rank-2, 3D array 
102      @keyword Ri_prime:      The empty rotation matrix for the in-frame isotropic cone motion, used to calculate the PCS for each state i in the numerical integration. 
103      @type Ri_prime:         numpy rank-2, 3D array 
104      @return:                The averaged PCS value. 
105      @rtype:                 float 
106      """ 
107   
108       
109      result = dblquad(pcs_pivot_motion_torsionless, -pi, pi, lambda phi: 0.0, lambda phi: theta_max, args=(r_pivot_atom, r_ln_pivot, A, R_eigen, RT_eigen, Ri_prime)) 
110   
111       
112      SA = 2.0 * pi * (1.0 - cos(theta_max)) 
113   
114       
115      return c * result[0] / SA 
 116   
117   
118 -def pcs_numeric_int_iso_cone_torsionless_qrint(points=None, theta_max=None, c=None, full_in_ref_frame=None, r_pivot_atom=None, r_pivot_atom_rev=None, r_ln_pivot=None, A=None, R_eigen=None, RT_eigen=None, Ri_prime=None, pcs_theta=None, pcs_theta_err=None, missing_pcs=None, error_flag=False): 
 119      """Determine the averaged PCS value via numerical integration. 
120   
121      @keyword points:            The Sobol points in the torsion-tilt angle space. 
122      @type points:               numpy rank-2, 3D array 
123      @keyword theta_max:         The half cone angle. 
124      @type theta_max:            float 
125      @keyword c:                 The PCS constant (without the interatomic distance and in Angstrom units). 
126      @type c:                    numpy rank-1 array 
127      @keyword full_in_ref_frame: An array of flags specifying if the tensor in the reference frame is the full or reduced tensor. 
128      @type full_in_ref_frame:    numpy rank-1 array 
129      @keyword r_pivot_atom:      The pivot point to atom vector. 
130      @type r_pivot_atom:         numpy rank-2, 3D array 
131      @keyword r_pivot_atom_rev:  The reversed pivot point to atom vector. 
132      @type r_pivot_atom_rev:     numpy rank-2, 3D array 
133      @keyword r_ln_pivot:        The lanthanide position to pivot point vector. 
134      @type r_ln_pivot:           numpy rank-2, 3D array 
135      @keyword A:                 The full alignment tensor of the non-moving domain. 
136      @type A:                    numpy rank-2, 3D array 
137      @keyword R_eigen:           The eigenframe rotation matrix. 
138      @type R_eigen:              numpy rank-2, 3D array 
139      @keyword RT_eigen:          The transpose of the eigenframe rotation matrix (for faster calculations). 
140      @type RT_eigen:             numpy rank-2, 3D array 
141      @keyword Ri_prime:          The empty rotation matrix for the in-frame isotropic cone motion, used to calculate the PCS for each state i in the numerical integration. 
142      @type Ri_prime:             numpy rank-2, 3D array 
143      @keyword pcs_theta:         The storage structure for the back-calculated PCS values. 
144      @type pcs_theta:            numpy rank-2 array 
145      @keyword pcs_theta_err:     The storage structure for the back-calculated PCS errors. 
146      @type pcs_theta_err:        numpy rank-2 array 
147      @keyword missing_pcs:       A structure used to indicate which PCS values are missing. 
148      @type missing_pcs:          numpy rank-2 array 
149      @keyword error_flag:        A flag which if True will cause the PCS errors to be estimated and stored in pcs_theta_err. 
150      @type error_flag:           bool 
151      """ 
152   
153       
154      for i in range(len(pcs_theta)): 
155          for j in range(len(pcs_theta[i])): 
156              pcs_theta[i, j] = 0.0 
157              pcs_theta_err[i, j] = 0.0 
158   
159       
160      num = 0 
161      for i in range(len(points)): 
162           
163          theta, phi = points[i] 
164   
165           
166          if theta > theta_max: 
167              continue 
168   
169           
170          pcs_pivot_motion_torsionless_qrint(theta_i=theta, phi_i=phi, full_in_ref_frame=full_in_ref_frame, r_pivot_atom=r_pivot_atom, r_pivot_atom_rev=r_pivot_atom_rev, r_ln_pivot=r_ln_pivot, A=A, R_eigen=R_eigen, RT_eigen=RT_eigen, Ri_prime=Ri_prime, pcs_theta=pcs_theta, pcs_theta_err=pcs_theta_err, missing_pcs=missing_pcs) 
171   
172           
173          num += 1 
174   
175       
176      for i in range(len(pcs_theta)): 
177          for j in range(len(pcs_theta[i])): 
178               
179              pcs_theta[i, j] = c[i] * pcs_theta[i, j] / float(num) 
180   
181               
182              if error_flag: 
183                  pcs_theta_err[i, j] = abs(pcs_theta_err[i, j] / float(num)  -  pcs_theta[i, j]**2) / float(num) 
184                  pcs_theta_err[i, j] = c[i] * sqrt(pcs_theta_err[i, j]) 
185                  print("%8.3f +/- %-8.3f" % (pcs_theta[i, j]*1e6, pcs_theta_err[i, j]*1e6)) 
 186