| 
  | __init__(self,
        model=None,
        init_params=None,
        full_tensors=None,
        full_in_ref_frame=None,
        rdcs=None,
        rdc_errors=None,
        rdc_weights=None,
        rdc_vect=None,
        dip_const=None,
        pcs=None,
        pcs_errors=None,
        pcs_weights=None,
        atomic_pos=None,
        temp=None,
        frq=None,
        paramag_centre=array([ 0.,  0.,  0.]),
        scaling_matrix=None,
        num_int_pts=500,
        com=None,
        ave_pos_pivot=array([ 0.,  0.,  0.]),
        ave_pos_piv_sync=True,
        translation_opt=False,
        pivot=None,
        pivot2=None,
        pivot_opt=False,
        quad_int=True)
    (Constructor)
 | source code |  Set up the target functions for the Frame Order theories. 
    Parameters:
        model(str) - The name of the Frame Order model.init_params(numpy float64 array) - The initial parameter values.full_tensors(numpy nx5D, rank-1 float64 array) - An array of the {Axx, Ayy, Axy, Axz, Ayz} values for all full 
          alignment tensors.  The format is [Axx1, Ayy1, Axy1, Axz1, Ayz1, 
          Axx2, Ayy2, Axy2, Axz2, Ayz2, ..., Axxn, Ayyn, Axyn, Axzn, Ayzn].full_in_ref_frame(numpy rank-1 array) - An array of flags specifying if the tensor in the reference frame
          is the full or reduced tensor.rdcs(numpy rank-2 array) - The RDC lists.  The first index must correspond to the different 
          alignment media i and the second index to the spin systems j.rdc_errors(numpy rank-2 array) - The RDC error lists.  The dimensions of this argument are the 
          same as for 'rdcs'.rdc_weights(numpy rank-2 array) - The RDC weight lists.  The dimensions of this argument are the 
          same as for 'rdcs'.rdc_vect(numpy rank-2 array) - The unit XH vector lists corresponding to the RDC values.  The 
          first index must correspond to the spin systems and the second 
          index to the x, y, z elements.dip_const(numpy rank-1 array) - The dipolar constants for each RDC.  The indices correspond to 
          the spin systems j.pcs(numpy rank-2 array) - The PCS lists.  The first index must correspond to the different 
          alignment media i and the second index to the spin systems j.pcs_errors(numpy rank-2 array) - The PCS error lists.  The dimensions of this argument are the 
          same as for 'pcs'.pcs_weights(numpy rank-2 array) - The PCS weight lists.  The dimensions of this argument are the 
          same as for 'pcs'.atomic_pos(numpy rank-3 array) - The atomic positions of all spins for the PCS and PRE data.  The 
          first index is the spin systems j and the second is the structure
          or state c.temp(numpy rank-1 array) - The temperature of each PCS data set.frq(numpy rank-1 array) - The frequency of each PCS data set.paramag_centre(numpy rank-1, 3D array or rank-2, Nx3 array) - The paramagnetic centre position (or positions).scaling_matrix(numpy rank-2 array) - The square and diagonal scaling matrix.num_int_pts(int) - The number of points to use for the numerical integration 
          technique.com(numpy 3D rank-1 array) - The centre of mass of the system.  This is used for defining the 
          rotor model systems.ave_pos_pivot(numpy 3D rank-1 array) - The pivot point to rotate all atoms about to the average domain 
          position.  For example this can be the centre of mass of the 
          moving domain.ave_pos_piv_sync(bool) - A flag which if True will cause pivot point to rotate to the 
          average domain position to be synchronised with the motional 
          pivot.  This will cause ave_pos_pivot argument to be ignored.translation_opt(bool) - A flag which if True will allow the pivot point of the motion to 
          be optimised.pivot(numpy rank-1, 3D array or None) - The pivot point for the ball-and-socket joint motion.  This is 
          needed if PCS or PRE values are used.pivot2(numpy rank-1, 3D array or None) - The second pivot point for the motion.  This is needed if PCS or 
          PRE values are used and if a double-motional model is to be 
          optimised.pivot_opt(bool) - A flag which if True will allow the pivot point of the motion to 
          be optimised.quad_int(bool) - A flag which if True will perform high precision numerical 
          integration via the scipy.integrate quad(), dblquad() and 
          tplquad() integration methods rather than the rough quasi-random 
          numerical integration. |