mailr2651 - /1.3/docs/latex/maths.tex


Others Months | Index by Date | Thread Index
>>   [Date Prev] [Date Next] [Thread Prev] [Thread Next]

Header


Content

Posted by edward on October 17, 2006 - 07:15:
Author: bugman
Date: Tue Oct 17 07:14:48 2006
New Revision: 2651

URL: http://svn.gna.org/viewcvs/relax?rev=2651&view=rev
Log:
Ported r2641 from the 1.2 line.

The command used was:
$ svn merge -r2640:2641 svn+ssh://bugman@xxxxxxxxxxx/svn/relax/1.2

This fixes documentation bug #7402 (https://gna.org/bugs/?7402).


Modified:
    1.3/docs/latex/maths.tex

Modified: 1.3/docs/latex/maths.tex
URL: 
http://svn.gna.org/viewcvs/relax/1.3/docs/latex/maths.tex?rev=2651&r1=2650&r2=2651&view=diff
==============================================================================
--- 1.3/docs/latex/maths.tex (original)
+++ 1.3/docs/latex/maths.tex Tue Oct 17 07:14:48 2006
@@ -502,21 +502,21 @@
 
 For the dipolar component of the $\crossrate$ equation~\eqref{eq: sigma_NOE} 
on page~\pageref{eq: sigma_NOE} the spectral density terms are
 \begin{equation}
-    J_d^{\crossrate} = 6J(\omega_H + \omega_X) - 6J(\omega_H - \omega_X).  
\label{eq: J terms: JsigmaNOEd}
+    J_d^{\crossrate} = 6J(\omega_H + \omega_X) - J(\omega_H - \omega_X).  
\label{eq: J terms: JsigmaNOEd}
 \end{equation}
 
 \noindent The partial derivative of these terms with respect to the spectral 
density function parameter $\theta_j$ is
 \begin{equation}
     {J_d^{\crossrate}}' \equiv \frac{\partial J_d^{\crossrate}}{\partial 
\theta_j}
         = 6 \frac{\partial J(\omega_H + \omega_X)}{\partial \theta_j}
-        - 6 \frac{\partial J(\omega_H - \omega_X)}{\partial \theta_j}.  
\label{eq: J terms: JsigmaNOEd'}
+          - \frac{\partial J(\omega_H - \omega_X)}{\partial \theta_j}.  
\label{eq: J terms: JsigmaNOEd'}
 \end{equation}
 
 \noindent The second partial derivative with respect to the spectral density 
function parameters $\theta_j$ and $\theta_k$ is
 \begin{equation}
     {J_d^{\crossrate}}'' \equiv \frac{\partial^2 J_d^{\crossrate}}{\partial 
\theta_j \cdot \partial \theta_k}
         = 6 \frac{\partial^2 J(\omega_H + \omega_X)}{\partial \theta_j \cdot 
\partial \theta_k}
-        - 6 \frac{\partial^2 J(\omega_H - \omega_X)}{\partial \theta_j \cdot 
\partial \theta_k}.  \label{eq: J terms: JsigmaNOEd"}
+          - \frac{\partial^2 J(\omega_H - \omega_X)}{\partial \theta_j \cdot 
\partial \theta_k}.  \label{eq: J terms: JsigmaNOEd"}
 \end{equation}
 
 




Related Messages


Powered by MHonArc, Updated Tue Oct 17 07:40:04 2006