mailr20174 - in /branches/relax_disp/docs/latex: bibliography.bib relax.tex relax_disp.tex


Others Months | Index by Date | Thread Index
>>   [Date Prev] [Date Next] [Thread Prev] [Thread Next]

Header


Content

Posted by edward on June 17, 2013 - 14:15:
Author: bugman
Date: Mon Jun 17 14:15:36 2013
New Revision: 20174

URL: http://svn.gna.org/viewcvs/relax?rev=20174&view=rev
Log:
Expanded the modelling of dispersion data section of the relax user manual.


Modified:
    branches/relax_disp/docs/latex/bibliography.bib
    branches/relax_disp/docs/latex/relax.tex
    branches/relax_disp/docs/latex/relax_disp.tex

Modified: branches/relax_disp/docs/latex/bibliography.bib
URL: 
http://svn.gna.org/viewcvs/relax/branches/relax_disp/docs/latex/bibliography.bib?rev=20174&r1=20173&r2=20174&view=diff
==============================================================================
--- branches/relax_disp/docs/latex/bibliography.bib (original)
+++ branches/relax_disp/docs/latex/bibliography.bib Mon Jun 17 14:15:36 2013
@@ -501,6 +501,28 @@
   size           = {2 p.},
   sourceid       = {ISI:000073645600043},
   year           = 1998
+}
+
+@Article{Bloch46,
+  Author         = {Bloch, F.},
+  Title          = {Nuclear induction},
+  Journal        = physrev,
+  Volume         = {70},
+  Number         = {7-8},
+  Pages          = {460-474},
+  address        = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
+  doc-delivery-number = {UB265},
+  doi            = {10.1103/PhysRev.70.460},
+  issn           = {0031-899X},
+  language       = {English},
+  number-of-cited-references = {14},
+  publisher      = {AMERICAN PHYSICAL SOC},
+  research-areas = {Physics},
+  times-cited    = {2053},
+  type           = {Article},
+  unique-id      = {ISI:A1946UB26500003},
+  web-of-science-categories = {Physics, Multidisciplinary},
+  year           = 1946
 }
 
 @Article{Bloembergen48,
@@ -4162,6 +4184,30 @@
   year           = 1963
 }
 
+@Article{McConnell58,
+  Author         = {McConnell, H.M.},
+  Title          = {Reaction rates by nuclear magnetic resonance},
+  Journal        = jcp,
+  Volume         = {28},
+  Number         = {3},
+  Pages          = {430-431},
+  address        = {CIRCULATION FULFILLMENT DIV, 500 SUNNYSIDE BLVD,
+                   WOODBURY, NY 11797-2999},
+  doc-delivery-number = {WA154},
+  doi            = {10.1063/1.1744152},
+  issn           = {0021-9606},
+  journal-iso    = {J. Chem. Phys.},
+  language       = {English},
+  number-of-cited-references = {7},
+  publisher      = {AMER INST PHYSICS},
+  research-areas = {Physics},
+  times-cited    = {1114},
+  type           = {Article},
+  unique-id      = {ISI:A1958WA15400013},
+  web-of-science-categories = {Physics, Atomic, Molecular \& Chemical},
+  year           = 1958
+}
+
 @Article{Meiboom61,
   Author         = {Meiboom, S.},
   Title          = {Nuclear magnetic resonance study of proton transfer

Modified: branches/relax_disp/docs/latex/relax.tex
URL: 
http://svn.gna.org/viewcvs/relax/branches/relax_disp/docs/latex/relax.tex?rev=20174&r1=20173&r2=20174&view=diff
==============================================================================
--- branches/relax_disp/docs/latex/relax.tex (original)
+++ branches/relax_disp/docs/latex/relax.tex Mon Jun 17 14:15:36 2013
@@ -105,6 +105,8 @@
 \newcommand{\Ronerhoprime}{\mathrm{R}_{1\rho}'}
 \newcommand{\Rtwoeff}{\mathrm{R}_{2\textrm{eff}}}
 \newcommand{\Rtwozero}{\mathrm{R}_2^0}
+\newcommand{\RtwozeroA}{\mathrm{R}_{2A}^0}
+\newcommand{\RtwozeroB}{\mathrm{R}_{2B}^0}
 \newcommand{\tex}{\tau_\textrm{ex}}
 \newcommand{\taucpmg}{\tau_\textrm{CPMG}}
 

Modified: branches/relax_disp/docs/latex/relax_disp.tex
URL: 
http://svn.gna.org/viewcvs/relax/branches/relax_disp/docs/latex/relax_disp.tex?rev=20174&r1=20173&r2=20174&view=diff
==============================================================================
--- branches/relax_disp/docs/latex/relax_disp.tex (original)
+++ branches/relax_disp/docs/latex/relax_disp.tex Mon Jun 17 14:15:36 2013
@@ -22,14 +22,41 @@
 
 \section{The modelling of dispersion data}
 
-The modelling of relaxation dispersion data can be catergorised into two 
distinct methodologies:
-
-\begin{itemize}
-\item Optimisation of models based on analytical, closed-form expressions 
derived from the Bloch-McConnell equations subject to certain conditions.
-\item Optimisation of models via numerical integration of the 
Bloch-McConnell equations.
-\end{itemize}
-
-Only the optimisation of the analytic models is currently supported in 
relax.  These models are dependent upon whether the data originates from a 
CPMG-type or $\Ronerho$-type experiment.  For the CPMG-type experiments, the 
models currently supported are:
+For a system under the influence of chemical exchange, the evolution of the 
transverse magnetisation is given by the \citet{Bloch46} equations as 
modified by \citet{McConnell58} for chemical exchange -- the Bloch-McConnell 
equations.
+For a two state exchange jumping between states A and B, the equation is:
+
+\begin{equation} \label{eq: Bloch-McConnell}
+    \frac{d}{dt} \left[ 
+        \begin{array}{c}
+            M_A^+(t) \\
+            M_B^+(t)
+        \end{array}
+    \right] = \left[
+        \begin{array}{cc}
+            -i\Omega_A-\RtwozeroA-\pB\kex & \pA\kex \\
+            \pB\kex & -i\Omega_B-\RtwozeroB-\pA\kex \\
+        \end{array}
+    \right] \left[
+        \begin{array}{c}
+            M_A^+(t) \\
+            M_B^+(t)
+        \end{array}
+    \right] .
+\end{equation}
+
+The solution to this equation then Fourier transformed to produce the NMR 
spectrum.  However the analytic or closed-form frequency-domain solution 
remains intractable.
+
+Solutions can nevertheless be found by either making assumptions or 
restrictions about the exchange process and then analytically 
solving~\ref{eq: Bloch-McConnell} or by numerical simulation.
+The modelling of relaxation dispersion data can hence be catergorised into 
these two distinct methodologies:
+
+\begin{description}
+\item[Analytical models:]\index{relaxation dispersion!Analytical model}  
Optimisation of models based on analytical, closed-form expressions derived 
from the Bloch-McConnell equations subject to certain conditions.
+\item[Numerical models:]\index{relaxation dispersion!Numerical model}  
Optimisation of models via numerical integration of the Bloch-McConnell 
equations.
+\end{description}
+
+Currently only the optimisation of the analytic models is supported in relax.
+These models are dependant upon whether the data originates from a CPMG-type 
or $\Ronerho$-type experiment.
+For the CPMG-type experiments, the models currently supported are:
 
 \begin{description}
 \item[`R2eff':]\index{relaxation dispersion!R2eff model}  This is the model 
used to determine the $\Rtwoeff$ values and errors required as the base data 
for all other models,
@@ -49,7 +76,9 @@
 \item[`M61 skew':]\index{relaxation dispersion!M61 skew model}  The 
\citet{Meiboom61} 2-site equation for all time scales with $\pA \gg \pB$ and 
with parameters \{$\mathrm{R}_{1\rho}'$, $\dots$, $\pA$, $\dw$, 
k$_\textrm{ex}$\},
 \end{description}
 
-Except for `R2eff' and `No Rex', these CPMG and $\Ronerho$ models are fit to 
clusterings of spins, or spin blocks.  The models are described in more 
detail below.  The parameters are given in Table~\ref{table: dispersion 
parameters}.
+Except for `R2eff' and `No Rex', these CPMG and $\Ronerho$ models can be fit 
to clusterings of spins, or spin blocks.
+The models are described in more detail below.
+The parameters are given in Table~\ref{table: dispersion parameters}.
 
 \begin{sidewaystable}
 \begin{center}




Related Messages


Powered by MHonArc, Updated Mon Jun 17 15:20:02 2013