mailr20313 - /branches/relax_disp/target_functions/relax_disp.py


Others Months | Index by Date | Thread Index
>>   [Date Prev] [Date Next] [Thread Prev] [Thread Next]

Header


Content

Posted by edward on July 16, 2013 - 09:31:
Author: bugman
Date: Tue Jul 16 09:31:24 2013
New Revision: 20313

URL: http://svn.gna.org/viewcvs/relax?rev=20313&view=rev
Log:
Created the 'NS 2-site star red' model target function.

This is the model of the numerical solution for the 2-site Bloch-McConnell 
equations using complex
conjugate matrices, whereby the simplification R20A = R20B is assumed.  The 
code in common with the
'NS 2-site star' model has been shifted into the new 
calc_ns_2site_star_chi2() method.

This commit follows step 4 of the relaxation dispersion model addition 
tutorial
(http://thread.gmane.org/gmane.science.nmr.relax.devel/3907).


Modified:
    branches/relax_disp/target_functions/relax_disp.py

Modified: branches/relax_disp/target_functions/relax_disp.py
URL: 
http://svn.gna.org/viewcvs/relax/branches/relax_disp/target_functions/relax_disp.py?rev=20313&r1=20312&r2=20313&view=diff
==============================================================================
--- branches/relax_disp/target_functions/relax_disp.py (original)
+++ branches/relax_disp/target_functions/relax_disp.py Tue Jul 16 09:31:24 
2013
@@ -36,7 +36,7 @@
 from lib.dispersion.ns_2site_star import r2eff_ns_2site_star
 from lib.errors import RelaxError
 from target_functions.chi2 import chi2
-from specific_analyses.relax_disp.variables import MODEL_CR72, MODEL_DPL94, 
MODEL_IT99, MODEL_LIST_FULL, MODEL_LM63, MODEL_M61, MODEL_M61B, MODEL_NOREX, 
MODEL_NS_2SITE_STAR, MODEL_R2EFF
+from specific_analyses.relax_disp.variables import MODEL_CR72, MODEL_DPL94, 
MODEL_IT99, MODEL_LIST_FULL, MODEL_LM63, MODEL_M61, MODEL_M61B, MODEL_NOREX, 
MODEL_NS_2SITE_STAR, MODEL_NS_2SITE_STAR_RED, MODEL_R2EFF
 
 
 class Dispersion:
@@ -135,7 +135,7 @@
             self.end_index.append(self.end_index[-1] + self.num_spins)
 
         # Set up the matrices for the numerical solutions.
-        if model in [MODEL_NS_2SITE_STAR]:
+        if model in [MODEL_NS_2SITE_STAR_RED, MODEL_NS_2SITE_STAR]:
             # The matrix that contains only the R2 relaxation terms 
("Redfield relaxation", i.e. non-exchange broadening).
             self.Rr = zeros((2, 2), complex64)
 
@@ -178,6 +178,68 @@
             self.func = self.func_M61b
         if model == MODEL_NS_2SITE_STAR:
             self.func = self.func_ns_2site_star
+        if model == MODEL_NS_2SITE_STAR_RED:
+            self.func = self.func_ns_2site_star_red
+
+
+    def calc_ns_2site_star_chi2(self, R20A=None, R20B=None, dw=None, 
pA=None, kex=None):
+        """Calculate the chi-squared value of the 'NS 2-site star' models.
+
+        @keyword R20A:  The R2 value for state A in the absence of exchange.
+        @type R20A:     list of float
+        @keyword R20B:  The R2 value for state B in the absence of exchange.
+        @type R20B:     list of float
+        @keyword dw:    The chemical shift differences in ppm for each spin.
+        @type dw:       list of float
+        @keyword pA:    The population of state A.
+        @type pA:       float
+        @keyword kex:   The rate of exchange.
+        @type kex:      float
+        @return:        The chi-squared value.
+        @rtype:         float
+        """
+
+        # Once off parameter conversions.
+        pB = 1.0 - pA
+        k_AB = pA * kex
+        k_BA = pB * kex
+
+        # Set up the matrix that contains the exchange terms between the two 
states A and B.
+        self.Rex[0, 0] = -k_AB
+        self.Rex[0, 1] = k_BA
+        self.Rex[1, 0] = k_AB
+        self.Rex[1, 1] = -k_BA
+
+        # This is a vector that contains the initial magnetizations 
corresponding to the A and B state transverse magnetizations.
+        self.M0[0] = pA
+        self.M0[1] = pB
+
+        # Chi-squared initialisation.
+        chi2_sum = 0.0
+
+        # Loop over the spins.
+        for spin_index in range(self.num_spins):
+            # Loop over the spectrometer frequencies.
+            for frq_index in range(self.num_frq):
+                # The R20 index.
+                r20_index = frq_index + spin_index*self.num_frq
+
+                # Convert dw from ppm to rad/s.
+                dw_frq = dw[spin_index] * self.frqs[spin_index, frq_index]
+
+                # Back calculate the R2eff values.
+                r2eff_ns_2site_star(Rr=self.Rr, Rex=self.Rex, RCS=self.RCS, 
R=self.R, M0=self.M0, r20a=R20A[r20_index], r20b=R20B[r20_index], fA=dw_frq, 
inv_tcpmg=self.inv_relax_time, tcp=self.tau_cpmg, 
back_calc=self.back_calc[spin_index, frq_index], 
num_points=self.num_disp_points, power=self.power)
+
+                # For all missing data points, set the back-calculated value 
to the measured values so that it has no effect on the chi-squared value.
+                for point_index in range(self.num_disp_points):
+                    if self.missing[spin_index, frq_index, point_index]:
+                        self.back_calc[spin_index, frq_index, point_index] = 
self.values[spin_index, frq_index, point_index]
+
+                # Calculate and return the chi-squared value.
+                chi2_sum += chi2(self.values[spin_index, frq_index], 
self.back_calc[spin_index, frq_index], self.errors[spin_index, frq_index])
+
+        # Return the total chi-squared value.
+        return chi2_sum
 
 
     def func_CR72(self, params):
@@ -525,44 +587,31 @@
         pA = params[self.end_index[2]]
         kex = params[self.end_index[2]+1]
 
-        # Once off parameter conversions.
-        pB = 1.0 - pA
-        k_AB = pA * kex
-        k_BA = pB * kex
-
-        # Set up the matrix that contains the exchange terms between the two 
states A and B.
-        self.Rex[0, 0] = -k_AB
-        self.Rex[0, 1] = k_BA
-        self.Rex[1, 0] = k_AB
-        self.Rex[1, 1] = -k_BA
-
-        # This is a vector that contains the initial magnetizations 
corresponding to the A and B state transverse magnetizations.
-        self.M0[0] = pA
-        self.M0[1] = pB
-
-        # Chi-squared initialisation.
-        chi2_sum = 0.0
-
-        # Loop over the spins.
-        for spin_index in range(self.num_spins):
-            # Loop over the spectrometer frequencies.
-            for frq_index in range(self.num_frq):
-                # The R20 index.
-                r20_index = frq_index + spin_index*self.num_frq
-
-                # Convert dw from ppm to rad/s.
-                dw_frq = dw[spin_index] * self.frqs[spin_index, frq_index]
-
-                # Back calculate the R2eff values.
-                r2eff_ns_2site_star(Rr=self.Rr, Rex=self.Rex, RCS=self.RCS, 
R=self.R, M0=self.M0, r20a=R20A[r20_index], r20b=R20B[r20_index], fA=dw_frq, 
inv_tcpmg=self.inv_relax_time, tcp=self.tau_cpmg, 
back_calc=self.back_calc[spin_index, frq_index], 
num_points=self.num_disp_points, power=self.power)
-
-                # For all missing data points, set the back-calculated value 
to the measured values so that it has no effect on the chi-squared value.
-                for point_index in range(self.num_disp_points):
-                    if self.missing[spin_index, frq_index, point_index]:
-                        self.back_calc[spin_index, frq_index, point_index] = 
self.values[spin_index, frq_index, point_index]
-
-                # Calculate and return the chi-squared value.
-                chi2_sum += chi2(self.values[spin_index, frq_index], 
self.back_calc[spin_index, frq_index], self.errors[spin_index, frq_index])
-
-        # Return the total chi-squared value.
-        return chi2_sum
+        # Calculate and return the chi-squared value.
+        return self.calc_ns_2site_star_chi2(R20A=R20A, R20B=R20B, dw=dw, 
pA=pA, kex=kex)
+
+
+    def func_ns_2site_star_red(self, params):
+        """Target function for the numerical solution for the 2-site 
Bloch-McConnell equations using complex conjugate matrices.
+
+        This is the model whereby the simplification R20A = R20B is assumed.
+
+
+        @param params:  The vector of parameter values.
+        @type params:   numpy rank-1 float array
+        @return:        The chi-squared value.
+        @rtype:         float
+        """
+
+        # Scaling.
+        if self.scaling_flag:
+            params = dot(params, self.scaling_matrix)
+
+        # Unpack the parameter values.
+        R20 = params[:self.end_index[0]]
+        dw = params[self.end_index[0]:self.end_index[1]]
+        pA = params[self.end_index[1]]
+        kex = params[self.end_index[1]+1]
+
+        # Calculate and return the chi-squared value.
+        return self.calc_ns_2site_star_chi2(R20A=R20, R20B=R20, dw=dw, 
pA=pA, kex=kex)




Related Messages


Powered by MHonArc, Updated Tue Jul 16 09:40:01 2013