mailr20713 - in /branches/relax_disp/docs/latex: dispersion.tex relax.tex


Others Months | Index by Date | Thread Index
>>   [Date Prev] [Date Next] [Thread Prev] [Thread Next]

Header


Content

Posted by edward on August 29, 2013 - 18:28:
Author: bugman
Date: Thu Aug 29 18:28:00 2013
New Revision: 20713

URL: http://svn.gna.org/viewcvs/relax?rev=20713&view=rev
Log:
Many fixes and improvements for all of the R1rho dispersion models in the 
user manual.

The equations are now correct and the parameter table updated with new 
parameters and equations.


Modified:
    branches/relax_disp/docs/latex/dispersion.tex
    branches/relax_disp/docs/latex/relax.tex

Modified: branches/relax_disp/docs/latex/dispersion.tex
URL: 
http://svn.gna.org/viewcvs/relax/branches/relax_disp/docs/latex/dispersion.tex?rev=20713&r1=20712&r2=20713&view=diff
==============================================================================
--- branches/relax_disp/docs/latex/dispersion.tex (original)
+++ branches/relax_disp/docs/latex/dispersion.tex Thu Aug 29 18:28:00 2013
@@ -127,7 +127,7 @@
 \begin{sidewaystable}
 \begin{center}
 \caption{The parameters of relaxation dispersion.}
-\begin{tabular}{llll}
+\begin{longtable}{llll}
 \toprule
 Parameter          & Equation                       & Description            
                                                       & Units \\
 \midrule
@@ -140,9 +140,14 @@
 $\RtwozeroA$       & -                              & $\Rtwo$ relaxation 
rate for state A in the absence of exchange                & rad.s$^{-1}$ \\
 $\RtwozeroB$       & -                              & $\Rtwo$ relaxation 
rate for state B in the absence of exchange                & rad.s$^{-1}$ \\
 $\Ronerhoprime$    & -                              & $\Ronerho$ relaxation 
rate in the absence of exchange                         & rad.s$^{-1}$ \\
-$\theta$           & -                              & Rotating frame tilt 
angle                                                     & rad \\
-$\omegaone$        & -                              & Spin-lock field 
strength                                                      & rad.s$^{-1}$ 
\\
-$\omegae$          & -                              & Effective field in the 
rotating frame                                         & rad.s$^{-1}$ \\
+$\aveoffset$       & $\aveomega - \omegarf$         & The average resonance 
offset in the rotating frame                            & rad.s$^{-1}$ \\
+$\omegaA$          & -                              & The Larmor frequency 
of the spin in state A                                   & rad.s$^{-1}$ \\
+$\omegaB$          & -                              & The Larmor frequency 
of the spin in state B                                   & rad.s$^{-1}$ \\
+$\aveomega$        & $\pA\omegaA + \pB\omegaB$      & The population 
averaged Larmor frequency of the spin                          & rad.s$^{-1}$ 
\\
+$\omegaone$        & -                              & Spin-lock field 
strength, i.e. the amplitude of the rf field                  & rad.s$^{-1}$ 
\\
+$\omegae$          & $\sqrt(\aveoffset^2 + \omegaone^2)$  & Effective field 
in the rotating frame                                   & rad.s$^{-1}$ \\
+$\omegarf$         & -                              & Spin-lock offset, i.e. 
the frequency of the rf field                          & rad.s$^{-1}$ \\
+$\theta$           & $\arctan \left( \frac{\omegaone}{\aveoffset} \right)$  
& Rotating frame tilt angle                             & rad \\
 $\kex$             & $1 / (2 \tex)$                 & Chemical exchange rate 
constant                                               & rad.s$^{-1}$ \\
 $\kexB$            & $\kAB + \kBA$                  & Chemical exchange rate 
constant between sites A and B                         & rad.s$^{-1}$ \\
 $\kexC$            & $\kAC + \kCA$                  & Chemical exchange rate 
constant between sites A and C                         & rad.s$^{-1}$ \\
@@ -151,13 +156,13 @@
 $\tex$             & $1 / (2 \kex)$                 & Time of exchange       
                                                       & s.rad$^{-1}$ \\
 $\pA$              & -                              & Population of state A  
                                                       & - \\
 $\pB$              & -                              & Population of state B  
                                                       & - \\
-$\dw$              & -                              & Chemical shift 
difference between the two states                              & ppm \\
+$\dw$              & -                              & Chemical shift 
difference between the two states                              & ppm (or 
rad.s$^{-1}$) \\
 $\Phiex$           & $\pA\pB\dw^2$                  & Fast exchange factor   
                                                       & rad$^2$.s$^{-2}$ \\
 $\PhiexB$          & See \ref{eq: disp phiexB} on page \pageref{eq: disp 
phiexB} & Fast exchange factor between sites A and B       & rad$^2$.s$^{-2}$ 
\\
 $\PhiexC$          & See \ref{eq: disp phiexC} on page \pageref{eq: disp 
phiexC} & Fast exchange factor between sites A and C       & rad$^2$.s$^{-2}$ 
\\
 \bottomrule
 \label{table: dispersion parameters}
-\end{tabular}
+\end{longtable}
 \end{center}
 \end{sidewaystable}
 
@@ -464,7 +469,7 @@
 
 This is the model for 2-site fast exchange for on-resonance $\Ronerho$-type 
experiments.  It is selected by setting the model to `M61', here named after 
\citet{Meiboom61}.  The equation for the exchange process is:
 \begin{equation}
-    \Ronerho = \Ronerhoprime + \sin^2(\theta) \frac{\Phiex\kex}{\kex^2 + 
\omegae^2} .
+    \Ronerho = \Ronerhoprime + \frac{\Phiex\kex}{\kex^2 + \omegae^2} .
 \end{equation}
 
 The reference for this equation is:
@@ -482,10 +487,10 @@
 
 This is the model for 2-site fast exchange for $\Ronerho$-type experiments.  
It is selected by setting the model to `DPL94', here named after 
\citet{Davis94}.  It extends the \citet{Meiboom61} model to off-resonance 
data.  The model collapses to the M61 model for on-resonance data.  The 
equation for the exchange process is:
 \begin{equation}
-    \Ronerho = \Ronerhoprime + \sin^2(\theta) \frac{\Phiex\kex}{\kex^2 + 
\omegae^2} .
-\end{equation}
-
-The reference for this equation is:
+    \Ronerho = \Rone \cos^2\theta  +  \left( \Ronerhoprime + 
\frac{\Phiex\kex}{\kex^2 + \omegae^2} \right) \sin^2\theta ,
+\end{equation}
+
+where $\theta$ is the rotating frame tilt angle.  The reference for this 
equation is:
 \begin{itemize}
 \item \bibentry{Davis94}
 \end{itemize}
@@ -515,7 +520,7 @@
 
 This is the model for 2-site exchange for off-resonance $\Ronerho$-type 
experiments from \citet{TrottPalmer02}.  It is selected by setting the model 
to `TP02'.  The equation for the exchange process is:
 \begin{equation}
-    \Ronerho = \Rone\cos^2(\theta) + \Ronerhoprime\sin^2(\theta) + 
\frac{\pA\pB\dw^2\kex}{\omega_\textrm{Aeff}^2\omega_\textrm{Beff}^2/\omega_\textrm{eff}^2
 + \kex^2} \sin^2(\theta).
+    \Ronerho = \Rone\cos^2\theta + \left( \Ronerhoprime + 
\frac{\pA\pB\dw^2\kex}{\omega_\textrm{Aeff}^2\omega_\textrm{Beff}^2/\omega_\textrm{eff}^2
 + \kex^2} \right) \sin^2\theta.
 \end{equation}
 
 

Modified: branches/relax_disp/docs/latex/relax.tex
URL: 
http://svn.gna.org/viewcvs/relax/branches/relax_disp/docs/latex/relax.tex?rev=20713&r1=20712&r2=20713&view=diff
==============================================================================
--- branches/relax_disp/docs/latex/relax.tex (original)
+++ branches/relax_disp/docs/latex/relax.tex Thu Aug 29 18:28:00 2013
@@ -128,6 +128,8 @@
 \newcommand{\Localset}{\mathfrak{T}}
 \newcommand{\KL}{\Delta_{\scriptscriptstyle \text{K-L}}}
 
+\newcommand{\aveoffset}{\bar\Omega}
+\newcommand{\aveomega}{\bar\omega}
 \newcommand{\dw}{\Delta\omega}
 \newcommand{\dwAB}{\Delta\omega_\textrm{AB}}
 \newcommand{\dwAC}{\Delta\omega_\textrm{AC}}
@@ -144,8 +146,11 @@
 \newcommand{\kBC}{\textrm{k}_\textrm{BC}}
 \newcommand{\kCB}{\textrm{k}_\textrm{CB}}
 \newcommand{\nucpmg}{\nu_\textrm{CPMG}}
+\newcommand{\omegaA}{\omega_\textrm{A}}
+\newcommand{\omegaB}{\omega_\textrm{B}}
 \newcommand{\omegae}{\omega_\textrm{e}}
 \newcommand{\omegaone}{\omega_1}
+\newcommand{\omegarf}{\omega_\textrm{rf}}
 \newcommand{\pA}{p_\textrm{A}}
 \newcommand{\pB}{p_\textrm{B}}
 \newcommand{\pC}{p_\textrm{C}}




Related Messages


Powered by MHonArc, Updated Thu Aug 29 18:40:02 2013