mailr20725 - /branches/relax_disp/target_functions/relax_disp.py


Others Months | Index by Date | Thread Index
>>   [Date Prev] [Date Next] [Thread Prev] [Thread Next]

Header


Content

Posted by edward on August 30, 2013 - 11:45:
Author: bugman
Date: Fri Aug 30 11:45:03 2013
New Revision: 20725

URL: http://svn.gna.org/viewcvs/relax?rev=20725&view=rev
Log:
Created the 'NS R1rho 2-site' model target function.

This is the numerical model for the 2-site Bloch-McConnell equations for 
R1rho data.  The code
originates from the funNumrho.m file from the Skrynikov & Tollinger code (the 
sim_all.tar file
https://gna.org/support/download.php?file_id=18404 attached to 
https://gna.org/task/?7712#comment5).

This commit follows step 4 of the relaxation dispersion model addition 
tutorial
(http://thread.gmane.org/gmane.science.nmr.relax.devel/3907).


Modified:
    branches/relax_disp/target_functions/relax_disp.py

Modified: branches/relax_disp/target_functions/relax_disp.py
URL: 
http://svn.gna.org/viewcvs/relax/branches/relax_disp/target_functions/relax_disp.py?rev=20725&r1=20724&r2=20725&view=diff
==============================================================================
--- branches/relax_disp/target_functions/relax_disp.py (original)
+++ branches/relax_disp/target_functions/relax_disp.py Fri Aug 30 11:45:03 
2013
@@ -37,12 +37,13 @@
 from lib.dispersion.ns_cpmg_2site_3d import r2eff_ns_cpmg_2site_3D
 from lib.dispersion.ns_cpmg_2site_expanded import 
r2eff_ns_cpmg_2site_expanded
 from lib.dispersion.ns_cpmg_2site_star import r2eff_ns_cpmg_2site_star
+from lib.dispersion.ns_r1rho_2site import ns_r1rho_2site
 from lib.dispersion.ns_matrices import r180x_3d
 from lib.dispersion.tp02 import r1rho_TP02
 from lib.dispersion.tsmfk01 import r2eff_TSMFK01
 from lib.errors import RelaxError
 from target_functions.chi2 import chi2
-from specific_analyses.relax_disp.variables import MODEL_CR72, 
MODEL_CR72_FULL, MODEL_DPL94, MODEL_IT99, MODEL_LIST_FULL, MODEL_LM63, 
MODEL_LM63_3SITE, MODEL_M61, MODEL_M61B, MODEL_NOREX, MODEL_NS_CPMG_2SITE_3D, 
MODEL_NS_CPMG_2SITE_3D_FULL, MODEL_NS_CPMG_2SITE_EXPANDED, 
MODEL_NS_CPMG_2SITE_STAR, MODEL_NS_CPMG_2SITE_STAR_FULL, MODEL_R2EFF, 
MODEL_TP02, MODEL_TSMFK01
+from specific_analyses.relax_disp.variables import MODEL_CR72, 
MODEL_CR72_FULL, MODEL_DPL94, MODEL_IT99, MODEL_LIST_FULL, MODEL_LM63, 
MODEL_LM63_3SITE, MODEL_M61, MODEL_M61B, MODEL_NOREX, MODEL_NS_CPMG_2SITE_3D, 
MODEL_NS_CPMG_2SITE_3D_FULL, MODEL_NS_CPMG_2SITE_EXPANDED, 
MODEL_NS_CPMG_2SITE_STAR, MODEL_NS_CPMG_2SITE_STAR_FULL, 
MODEL_NS_R1RHO_2SITE, MODEL_R2EFF, MODEL_TP02, MODEL_TSMFK01
 
 
 class Dispersion:
@@ -189,6 +190,8 @@
         if model in [MODEL_NS_CPMG_2SITE_3D, MODEL_NS_CPMG_2SITE_3D_FULL]:
             self.M0 = zeros(7, float64)
             self.M0[0] = 0.5
+        if model in [MODEL_NS_R1RHO_2SITE]:
+            self.M0 = zeros(6, float64)
 
         # Some other data structures for the numerical solutions.
         if model in [MODEL_NS_CPMG_2SITE_3D, MODEL_NS_CPMG_2SITE_3D_FULL, 
MODEL_NS_CPMG_2SITE_EXPANDED, MODEL_NS_CPMG_2SITE_STAR, 
MODEL_NS_CPMG_2SITE_STAR_FULL]:
@@ -199,7 +202,8 @@
                 self.tau_cpmg[i] = 0.25 / self.cpmg_frqs[i]
                 self.power[i] = int(round(self.cpmg_frqs[i] * 
self.relax_time))
 
-            # The inverted relaxation delay.
+        # The inverted relaxation delay.
+        if model in [MODEL_NS_CPMG_2SITE_3D, MODEL_NS_CPMG_2SITE_3D_FULL, 
MODEL_NS_CPMG_2SITE_EXPANDED, MODEL_NS_CPMG_2SITE_STAR, 
MODEL_NS_CPMG_2SITE_STAR_FULL, MODEL_NS_R1RHO_2SITE]:
             self.inv_relax_time = 1.0 / relax_time
 
         # Set up the model.
@@ -235,6 +239,8 @@
             self.func = self.func_ns_cpmg_2site_star
         if model == MODEL_TP02:
             self.func = self.func_TP02
+        if model == MODEL_NS_R1RHO_2SITE:
+            self.func = self.func_ns_r1rho_2site
 
 
     def calc_CR72_chi2(self, R20A=None, R20B=None, dw=None, pA=None, 
kex=None):
@@ -929,6 +935,62 @@
         return self.calc_ns_cpmg_2site_star_chi2(R20A=R20A, R20B=R20B, 
dw=dw, pA=pA, kex=kex)
 
 
+    def func_ns_r1rho_2site(self, params):
+        """Target function for the reduced numerical solution for the 2-site 
Bloch-McConnell equations for R1rho data.
+
+        @param params:  The vector of parameter values.
+        @type params:   numpy rank-1 float array
+        @return:        The chi-squared value.
+        @rtype:         float
+        """
+
+        # Scaling.
+        if self.scaling_flag:
+            params = dot(params, self.scaling_matrix)
+
+        # Unpack the parameter values.
+        r1rho_prime = params[:self.end_index[0]]
+        dw = params[self.end_index[0]:self.end_index[1]]
+        pA = params[self.end_index[1]]
+        kex = params[self.end_index[1]+1]
+
+        # Once off parameter conversions.
+        pB = 1.0 - pA
+        k_BA = pA * kex
+        k_AB = pB * kex
+
+        # This is a vector that contains the initial magnetizations 
corresponding to the A and B state transverse magnetizations.
+        self.M0[0] = pA
+        self.M0[1] = pB
+
+        # Chi-squared initialisation.
+        chi2_sum = 0.0
+
+        # Loop over the spins.
+        for spin_index in range(self.num_spins):
+            # Loop over the spectrometer frequencies.
+            for frq_index in range(self.num_frq):
+                # The R20 index.
+                r20_index = frq_index + spin_index*self.num_frq
+
+                # Convert dw from ppm to rad/s.
+                dw_frq = dw[spin_index] * self.frqs[spin_index, frq_index]
+
+                # Back calculate the R2eff values.
+                ns_r1rho_2site(M0=self.M0, 
r1rho_prime=r1rho_prime[r20_index], omega=self.chemical_shifts[spin_index, 
frq_index], r1=self.r1[spin_index, frq_index], pA=pA, pB=pB, dw=dw_frq, 
k_AB=k_AB, k_BA=k_BA, spin_lock_fields=self.spin_lock_nu1, 
relax_time=self.relax_time, inv_relax_time=self.inv_relax_time, 
back_calc=self.back_calc[spin_index, frq_index], 
num_points=self.num_disp_points)
+
+                # For all missing data points, set the back-calculated value 
to the measured values so that it has no effect on the chi-squared value.
+                for point_index in range(self.num_disp_points):
+                    if self.missing[spin_index, frq_index, point_index]:
+                        self.back_calc[spin_index, frq_index, point_index] = 
self.values[spin_index, frq_index, point_index]
+
+                # Calculate and return the chi-squared value.
+                chi2_sum += chi2(self.values[spin_index, frq_index], 
self.back_calc[spin_index, frq_index], self.errors[spin_index, frq_index])
+
+        # Return the total chi-squared value.
+        return chi2_sum
+
+
     def func_TP02(self, params):
         """Target function for the Trott and Palmer (2002) R1rho 
off-resonance 2-site model.
 




Related Messages


Powered by MHonArc, Updated Fri Aug 30 12:20:02 2013