mailr21077 - in /branches/relax_disp/docs/latex: bibliography.bib dispersion.tex relax.tex


Others Months | Index by Date | Thread Index
>>   [Date Prev] [Date Next] [Thread Prev] [Thread Next]

Header


Content

Posted by edward on October 11, 2013 - 17:47:
Author: bugman
Date: Fri Oct 11 17:47:29 2013
New Revision: 21077

URL: http://svn.gna.org/viewcvs/relax?rev=21077&view=rev
Log:
Added the 'MQ NS CPMG 2-site' model to the relax user manual.

This is the 2-site numeric solution for multi-quantum CPMG-type data.

This follows the tutorial for adding relaxation dispersion models at:
http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#The_relax_manual.


Modified:
    branches/relax_disp/docs/latex/bibliography.bib
    branches/relax_disp/docs/latex/dispersion.tex
    branches/relax_disp/docs/latex/relax.tex

Modified: branches/relax_disp/docs/latex/bibliography.bib
URL: 
http://svn.gna.org/viewcvs/relax/branches/relax_disp/docs/latex/bibliography.bib?rev=21077&r1=21076&r2=21077&view=diff
==============================================================================
--- branches/relax_disp/docs/latex/bibliography.bib (original)
+++ branches/relax_disp/docs/latex/bibliography.bib Fri Oct 11 17:47:29 2013
@@ -3484,6 +3484,140 @@
   year           = 1997
 }
 
+@Article{Korzhnev04a,
+  Author         = {Korzhnev, D. M. and Kloiber, K. and Kanelis, V. and
+                   Tugarinov, V. and Kay, L. E.},
+  Title          = {Probing slow dynamics in high molecular weight
+                   proteins by methyl-{TROSY} {NMR} spectroscopy:
+                   application to a 723-residue enzyme.},
+  Journal        = jacs,
+  Volume         = {126},
+  Number         = {12},
+  Pages          = {3964-3973},
+  abstract       = {A new CPMG-based multiple quantum relaxation
+                   dispersion experiment is presented for measuring
+                   millisecond dynamic processes at side-chain methyl
+                   positions in high molecular weight proteins. The
+                   experiment benefits from a methyl-TROSY effect in which
+                   cancellation of intramethyl dipole fields occurs,
+                   leading to methyl (13)C-(1)H correlation spectra of
+                   high sensitivity and resolution (Tugarinov, V.; Hwang,
+                   P. M.; Ollerenshaw, J. E.; Kay, L. E. J. Am. Chem. Soc.
+                   2003, 125, 10420-10428). The utility of the methodology
+                   is illustrated with an application to a highly
+                   deuterated, methyl-protonated sample of malate synthase
+                   G, an 82 kDa enzyme consisting of a single polypeptide
+                   chain. A comparison of the sensitivity obtained using
+                   the present approach relative to existing HSQC-type
+                   (13)C single quantum dispersion experiments shows a
+                   gain of a factor of 5.4 on average, significantly
+                   increasing the range of applications for this
+                   methodology.},
+  authoraddress  = {Protein Engineering Network Centres of Excellence and
+                   the Departments of Medical Genetics, Biochemistry, and
+                   Chemistry, University of Toronto, Toronto, Ontario,
+                   Canada M5S 1A8.},
+  keywords       = {Carbon Isotopes ; Malate Synthase/*chemistry ; Models,
+                   Chemical ; Models, Molecular ; Molecular Weight ;
+                   Nuclear Magnetic Resonance, Biomolecular/*methods ;
+                   Protein Conformation ; Thermodynamics},
+  language       = {eng},
+  medline-aid    = {10.1021/ja039587i [doi]},
+  medline-crdt   = {2004/03/25 05:00},
+  medline-da     = {20040324},
+  medline-dcom   = {20040707},
+  medline-edat   = {2004/03/25 05:00},
+  medline-fau    = {Korzhnev, Dmitry M ; Kloiber, Karin ; Kanelis, Voula ;
+                   Tugarinov, Vitali ; Kay, Lewis E},
+  medline-is     = {0002-7863 (Print) ; 0002-7863 (Linking)},
+  medline-jid    = {7503056},
+  medline-jt     = {Journal of the American Chemical Society},
+  medline-lr     = {20061115},
+  medline-mhda   = {2004/07/09 05:00},
+  medline-own    = {NLM},
+  medline-pl     = {United States},
+  medline-pmid   = {15038751},
+  medline-pst    = {ppublish},
+  medline-pt     = {Journal Article ; Research Support, Non-U.S. Gov't},
+  medline-rn     = {0 (Carbon Isotopes) ; EC 2.3.3.9 (Malate Synthase)},
+  medline-sb     = {IM},
+  medline-so     = {J Am Chem Soc. 2004 Mar 31;126(12):3964-73.},
+  medline-stat   = {MEDLINE},
+  url            = 
{http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?cmd=prlinks&dbfrom=pubmed&retmode=ref&id=15038751},
+  doi            = {10.1021/ja039587i},
+  year           = 2004
+}
+
+@Article{Korzhnev04b,
+  Author         = {Korzhnev, D. M. and Kloiber, K. and Kay, L. E.},
+  Title          = {Multiple-quantum relaxation dispersion {NMR}
+                   spectroscopy probing millisecond time-scale dynamics in
+                   proteins: theory and application.},
+  Journal        = jacs,
+  Volume         = {126},
+  Number         = {23},
+  Pages          = {7320-7329},
+  abstract       = {New relaxation dispersion experiments are presented
+                   that probe millisecond time-scale dynamical processes
+                   in proteins. The experiments measure the relaxation of
+                   (1)H-(15)N multiple-quantum coherence as a function of
+                   the rate of application of either (1)H or (15)N
+                   refocusing pulses during a constant time relaxation
+                   interval. In contrast to the dispersion profiles
+                   generated from more conventional (15)N((1)H)
+                   single-quantum relaxation experiments that depend on
+                   changes in (15)N((1)H) chemical shifts between
+                   exchanging states, (1)H-(15)N multiple-quantum
+                   dispersions are sensitive to changes in the chemical
+                   environments of both (1)H and (15)N spins. The
+                   resulting multiple-quantum relaxation dispersion
+                   profiles can, therefore, be quite different from those
+                   generated by single-quantum experiments, so that an
+                   analysis of both single- and multiple-quantum profiles
+                   together provides a powerful approach for obtaining
+                   robust measures of exchange parameters. This is
+                   particularly the case in applications to protonated
+                   proteins where other methods for studying exchange
+                   involving amide proton spins are negatively influenced
+                   by contributions from neighboring protons. The
+                   methodology is demonstrated on protonated and
+                   perdeuterated samples of a G48M mutant of the Fyn SH3
+                   domain that exchanges between folded and unfolded
+                   states in solution.},
+  authoraddress  = {Protein Engineering Network Centres of Excellence and
+                   the Department of Medical Genetics, University of
+                   Toronto, Toronto, Ontario, Canada M5S 1A8.},
+  keywords       = {*Magnetic Resonance Spectroscopy ; Protein Folding ;
+                   Proto-Oncogene Proteins/*chemistry/*metabolism ;
+                   Proto-Oncogene Proteins c-fyn ; Time Factors ; src
+                   Homology Domains},
+  language       = {eng},
+  medline-aid    = {10.1021/ja049968b [doi]},
+  medline-crdt   = {2004/06/10 05:00},
+  medline-da     = {20040609},
+  medline-dcom   = {20040923},
+  medline-edat   = {2004/06/10 05:00},
+  medline-fau    = {Korzhnev, Dmitry M ; Kloiber, Karin ; Kay, Lewis E},
+  medline-is     = {0002-7863 (Print) ; 0002-7863 (Linking)},
+  medline-jid    = {7503056},
+  medline-jt     = {Journal of the American Chemical Society},
+  medline-lr     = {20091119},
+  medline-mhda   = {2004/09/24 05:00},
+  medline-own    = {NLM},
+  medline-pl     = {United States},
+  medline-pmid   = {15186169},
+  medline-pst    = {ppublish},
+  medline-pt     = {Journal Article ; Research Support, Non-U.S. Gov't},
+  medline-rn     = {0 (Proto-Oncogene Proteins) ; EC 2.7.10.2
+                   (Proto-Oncogene Proteins c-fyn)},
+  medline-sb     = {IM},
+  medline-so     = {J Am Chem Soc. 2004 Jun 16;126(23):7320-9.},
+  medline-stat   = {MEDLINE},
+  url            = 
{http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?cmd=prlinks&dbfrom=pubmed&retmode=ref&id=15186169},
+  doi            = {10.1021/ja049968b},
+  year           = 2004
+}
+
 @Article{KullbackLeibler51,
   Author         = {Kullback, S. and Leibler, R. A.},
   Title          = {On information and sufficiency},

Modified: branches/relax_disp/docs/latex/dispersion.tex
URL: 
http://svn.gna.org/viewcvs/relax/branches/relax_disp/docs/latex/dispersion.tex?rev=21077&r1=21076&r2=21077&view=diff
==============================================================================
--- branches/relax_disp/docs/latex/dispersion.tex (original)
+++ branches/relax_disp/docs/latex/dispersion.tex Fri Oct 11 17:47:29 2013
@@ -112,6 +112,14 @@
 \begin{description}
 \item[`NS R1rho 2-site':]\index{relaxation dispersion!NS R1rho 2-site model} 
 The model for 2-site exchange using 3D magnetisation vectors.  It has the 
parameters $\{\Ronerhoprime, \dots, \pA, \dw, \kex\}$.  See 
Section~\ref{sect: dispersion: NS R1rho 2-site model} on page~\pageref{sect: 
dispersion: NS R1rho 2-site model}.
 \end{description}
+
+
+For the MQ CPMG-type experiments, the numeric models currently supported are:
+
+\begin{description}
+\item[`MQ NS CPMG 2-site':]\index{relaxation dispersion!MQ NS CPMG 2-site 
model}  The reduced model for 2-site exchange using 2D magnetisation vectors 
whereby the simplification $\RtwozeroA = \RtwozeroB$ is assumed.  It has the 
parameters $\{\Rtwozero, \dots, \pA, \dw, \dwH, \kex\}$.  See 
Section~\ref{sect: dispersion: MQ NS CPMG 2-site} on page~\pageref{sect: 
dispersion: MQ NS CPMG 2-site}.
+\end{description}
+
 
 
 % Dispersion model summary.
@@ -158,6 +166,7 @@
 $\pA$              & -                              & Population of state A  
                                                       & - \\
 $\pB$              & -                              & Population of state B  
                                                       & - \\
 $\dw$              & -                              & Chemical shift 
difference between the two states                              & rad.s$^{-1}$ 
(stored as ppm) \\
+$\dwH$             & -                              & Proton chemical shift 
difference between the two states (for MQ data)         & rad.s$^{-1}$ 
(stored as ppm) \\
 $\Phiex$           & $\pA\pB\dw^2$                  & Fast exchange factor   
                                                       & rad$^2$.s$^{-2}$ 
(stored as ppm$^2$) \\
 $\PhiexB$          & See \ref{eq: disp phiexB} on page \pageref{eq: disp 
phiexB} & Fast exchange factor between sites A and B       & rad$^2$.s$^{-2}$ 
(stored as ppm$^2$) \\
 $\PhiexC$          & See \ref{eq: disp phiexC} on page \pageref{eq: disp 
phiexC} & Fast exchange factor between sites A and C       & rad$^2$.s$^{-2}$ 
(stored as ppm$^2$) \\
@@ -647,10 +656,101 @@
 The simple constraint $\pA > \pB$ is used to halve the optimisation space, 
as both sides of the limit are mirror image spaces.
 
 
+% The numeric MQ CPMG models.
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+\section{The numeric MQ CPMG models}
+\label{sect: dispersion: numeric MQ CPMG models}
+\index{relaxation dispersion!Numeric MQ CPMG model|textbf}
+
+\begin{sidewaystable}
+\begin{center}
+\caption{The analytic and numerical models for MQ CPMG-type experiments 
currently supported within relax}
+\begin{tabular}{lllcll}
+\toprule
+Model code               & Solution & Sites & Parameters                     
                     & Restriction                       & Reference \\
+\midrule                                    
+R2eff                    & -        & -     & $\{\Rtwoeff, \cdots\}$         
                     & Fixed relaxation time period      & - \\
+R2eff                    & -        & -     & $\{\Rtwoeff, I_0, \cdots\}$    
                     & Variable relaxation time period   & - \\
+No Rex                   & Closed   & 0     & $\{\Rtwozero, \cdots\}$        
                     & -                                 & - \\
+MQ NS CPMG 2-site        & Numeric  & 2     & $\{\Rtwozero, \dots, \pA, \dw, 
\dwH, \kex\}$        & $\pA > \pB$                       & 
\citet{Korzhnev04a} \\
+\bottomrule
+\label{table: CPMG dispersion models}
+\end{tabular}
+\end{center}
+\end{sidewaystable}
+
+
+% MQ NS CPMG 2-site model.
+%~~~~~~~~~~~~~~~~~~~~~~~~~
+
+\subsection{The MQ NS CPMG 2-site model}
+\label{sect: dispersion: MQ NS CPMG 2-site model}
+\index{relaxation dispersion!MQ NS CPMG 2-site model|textbf}
+
+This is the numerical model for 2-site exchange using 2D magnetisation 
vectors, as derived by \citep{Korzhnev04a}.
+It is selected by setting the model to `MQ NS CPMG 2-site'.
+The simple constraint $\pA > \pB$ is used to halve the optimisation space, 
as both sides of the limit are mirror image spaces.
+The equation for the exchange process is 
+\begin{equation}
+    \Rtwoeff = - \frac{1}{T}
+                 \log \left\{ Re \left[ \frac{0.5}{\pA}
+                     \begin{pmatrix}1&0\end{pmatrix} \cdot \left( 
\mathbf{AB} + \mathbf{CD} \right) \cdot \begin{pmatrix}\pA\\\pB\end{pmatrix}
+                 \right] \right\},
+\end{equation}
+
+where $T$ is the constant time interval, and the matrices $\mathbf{A}$, 
$\mathbf{B}$, $\mathbf{C}$, and $\mathbf{D}$ are differentially defined.
+When $n$ is even, they are defined as 
+\begin{subequations}
+\begin{align}
+    \mathbf{A} &= \left( \mathbf{M_1} \mathbf{M_2} \mathbf{M_2} \mathbf{M_1} 
\right)^{\frac{n}{2}}, \\
+    \mathbf{B} &= \left( \mathbf{M_2}^* \mathbf{M_1}^* \mathbf{M_1}^* 
\mathbf{M_2}^* \right)^{\frac{n}{2}}, \\
+    \mathbf{C} &= \left( \mathbf{M_2} \mathbf{M_1} \mathbf{M_1} \mathbf{M_2} 
\right)^{\frac{n}{2}}, \\
+    \mathbf{D} &= \left( \mathbf{M_1}^* \mathbf{M_2}^* \mathbf{M_2}^* 
\mathbf{M_1}^* \right)^{\frac{n}{2}},
+\end{align}
+\end{subequations}
+
+and when $n$ is odd, they are defined as
+\begin{subequations}
+\begin{align}
+    \mathbf{A} &= \left( \mathbf{M_1} \mathbf{M_2} \mathbf{M_2} \mathbf{M_1} 
\right)^{\frac{n-1}{2}} \mathbf{M_1} \mathbf{M_2}, \\
+    \mathbf{B} &= \left( \mathbf{M_1}^* \mathbf{M_2}^* \mathbf{M_2}^* 
\mathbf{M_1}^* \right)^{\frac{n-1}{2}} \mathbf{M_1}^* \mathbf{M_2}^*, \\
+    \mathbf{C} &= \left( \mathbf{M_2} \mathbf{M_1} \mathbf{M_1} \mathbf{M_2} 
\right)^{\frac{n-1}{2}} \mathbf{M_2} \mathbf{M_1}, \\
+    \mathbf{D} &= \left( \mathbf{M_2}^* \mathbf{M_1}^* \mathbf{M_1}^* 
\mathbf{M_2}^* \right)^{\frac{n-1}{2}} \mathbf{M_2}^* \mathbf{M_1}^*.
+\end{align}
+\end{subequations}
+
+The $\mathbf{M}$ matrices are defined as:
+\begin{equation}
+    \mathbf{M_j} = \exp(\mathbf{m_j}\delta),
+\end{equation}
+
+where $2\delta$ is the spacing between successive 180$^\circ$ pulses and 
where
+\begin{subequations}
+\begin{align}
+    \mathbf{m_1} &= \begin{pmatrix}
+                        -\pB\kex - \RtwoDQA & \pA\kex \\
+                        \pB\kex & - \pA\kex -i(\dwH + \dw) \RtwoDQB 
+                    \end{pmatrix}, \\
+    \mathbf{m_2} &=  \begin{pmatrix}
+                        -\pB\kex - \RtwoZQA & \pA\kex \\
+                        \pB\kex & - \pA\kex -i(\dwH - \dw) \RtwoZQB 
+                    \end{pmatrix},
+\end{align}
+\end{subequations}
+
+The references for this model are:
+\begin{itemize}
+\item \bibentry{Korzhnev04a}
+\item \bibentry{Korzhnev04b}
+\end{itemize}
+
+
 
 % Script UI.
 %%%%%%%%%%%%
 
+\newpage
 \section{Analysing dispersion in the prompt/script UI mode}
 
 Before reading this section, please read Chapter~\ref{ch: data model} 
covering the relax data model first.  It will explain many of the concepts 
used within the following example script.

Modified: branches/relax_disp/docs/latex/relax.tex
URL: 
http://svn.gna.org/viewcvs/relax/branches/relax_disp/docs/latex/relax.tex?rev=21077&r1=21076&r2=21077&view=diff
==============================================================================
--- branches/relax_disp/docs/latex/relax.tex (original)
+++ branches/relax_disp/docs/latex/relax.tex Fri Oct 11 17:47:29 2013
@@ -165,6 +165,10 @@
 \newcommand{\RtwozeroA}{\mathrm{R}_{2A}^0}
 \newcommand{\RtwozeroB}{\mathrm{R}_{2B}^0}
 \newcommand{\RtwozeroC}{\mathrm{R}_{2C}^0}
+\newcommand{\RtwoDQA}{\mathrm{R}_{2,DQ}^A}
+\newcommand{\RtwoDQB}{\mathrm{R}_{2,DQ}^B}
+\newcommand{\RtwoZQA}{\mathrm{R}_{2,ZQ}^A}
+\newcommand{\RtwoZQB}{\mathrm{R}_{2,ZQ}^B}
 \newcommand{\tex}{\tau_\textrm{ex}}
 \newcommand{\taucpmg}{\tau_\textrm{CPMG}}
 




Related Messages


Powered by MHonArc, Updated Fri Oct 11 18:40:02 2013