mailr21872 - in /trunk: docs/latex/ lib/dispersion/ target_functions/


Others Months | Index by Date | Thread Index
>>   [Date Prev] [Date Next] [Thread Prev] [Thread Next]

Header


Content

Posted by edward on December 08, 2013 - 23:05:
Author: bugman
Date: Sun Dec  8 23:05:40 2013
New Revision: 21872

URL: http://svn.gna.org/viewcvs/relax?rev=21872&view=rev
Log:
Complete reworking of the 'NS R1rho 2-site' dispersion model.

The original code of Nikolai Skrynnikov and Martin Tollinger has been 
modified to match the
behaviour of Dmitry Korzhnev's cpmg_fit software.  The equations from 
Korzhnev et al., JACS 2005
(http://dx.doi.org/10.1021/ja0446855) have been used for the initial 
magnetisation and the R1rho'
calculation.  All equations have been added to the manual to clarify the 
model.


Modified:
    trunk/docs/latex/bibliography.bib
    trunk/docs/latex/dispersion.tex
    trunk/docs/latex/dispersion_models.tex
    trunk/lib/dispersion/ns_r1rho_2site.py
    trunk/target_functions/relax_disp.py

Modified: trunk/docs/latex/bibliography.bib
URL: 
http://svn.gna.org/viewcvs/relax/trunk/docs/latex/bibliography.bib?rev=21872&r1=21871&r2=21872&view=diff
==============================================================================
--- trunk/docs/latex/bibliography.bib (original)
+++ trunk/docs/latex/bibliography.bib Sun Dec  8 23:05:40 2013
@@ -3868,7 +3868,81 @@
   year           = 2004
 }
 
-@Article{Korzhnev05,
+@Article{Korzhnev05a,
+  Author         = {Korzhnev, D. M. and Orekhov, V. Y. and Kay, L. E.},
+  Title          = {Off-resonance {R}(1rho) {NMR} studies of exchange
+                   dynamics in proteins with low spin-lock fields: an
+                   application to a {F}yn {SH}3 domain.},
+  Journal        = jacs,
+  Volume         = {127},
+  Number         = {2},
+  Pages          = {713-721},
+  abstract       = {An (15)N NMR R(1rho) relaxation experiment is
+                   presented for the measurement of millisecond time scale
+                   exchange processes in proteins. On- and off-resonance
+                   R(1rho) relaxation profiles are recorded one residue at
+                   a time using a series of one-dimensional experiments in
+                   concert with selective Hartmann-Hahn polarization
+                   transfers. The experiment can be performed using low
+                   spin-lock field strengths (values as low as 25 Hz have
+                   been tested), with excellent alignment of magnetization
+                   along the effective field achieved. Additionally,
+                   suppression of the effects of cross-correlated
+                   relaxation between dipolar and chemical shift
+                   anisotropy interactions and (1)H-(15)N scalar coupled
+                   evolution is straightforward to implement, independent
+                   of the strength of the (15)N spin-locking field. The
+                   methodology is applied to study the folding of a G48M
+                   mutant of the Fyn SH3 domain that has been
+                   characterized previously by CPMG dispersion
+                   experiments. It is demonstrated through experiment that
+                   off-resonance R(1rho) data measured at a single
+                   magnetic field and one or more spin-lock field
+                   strengths, with amplitudes on the order of the rate of
+                   exchange, allow a complete characterization of a
+                   two-site exchange process. This is possible even in the
+                   case of slow exchange on the NMR time scale, where
+                   complementary approaches involving CPMG-based
+                   experiments fail. Advantages of this methodology in
+                   relation to other approaches are described.},
+  authoraddress  = {Protein Engineering Network Centers of Excellence and
+                   Department of Medical Genetics, The University of
+                   Toronto, Toronto, Ontario, Canada M5S 1A8.},
+  keywords       = {Nitrogen Isotopes ; Nuclear Magnetic Resonance,
+                   Biomolecular/*methods ; Protein Folding ;
+                   Proto-Oncogene Proteins/*chemistry ; Proto-Oncogene
+                   Proteins c-fyn ; src Homology Domains ; src-Family
+                   Kinases/*chemistry},
+  language       = {eng},
+  medline-aid    = {10.1021/ja0446855 [doi]},
+  medline-crdt   = {2005/01/13 09:00},
+  medline-da     = {20050112},
+  medline-dcom   = {20050303},
+  medline-edat   = {2005/01/13 09:00},
+  medline-fau    = {Korzhnev, Dmitry M ; Orekhov, Vladislav Yu ; Kay,
+                   Lewis E},
+  medline-is     = {0002-7863 (Print) ; 0002-7863 (Linking)},
+  medline-jid    = {7503056},
+  medline-jt     = {Journal of the American Chemical Society},
+  medline-lr     = {20091119},
+  medline-mhda   = {2005/03/04 09:00},
+  medline-own    = {NLM},
+  medline-pl     = {United States},
+  medline-pmid   = {15643897},
+  medline-pst    = {ppublish},
+  medline-pt     = {Journal Article ; Research Support, Non-U.S. Gov't},
+  medline-rn     = {0 (Nitrogen Isotopes) ; 0 (Proto-Oncogene Proteins) ;
+                   EC 2.7.10.2 (Proto-Oncogene Proteins c-fyn) ; EC
+                   2.7.10.2 (src-Family Kinases)},
+  medline-sb     = {IM},
+  medline-so     = {J Am Chem Soc. 2005 Jan 19;127(2):713-21.},
+  medline-stat   = {MEDLINE},
+  url            = 
{http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?cmd=prlinks&dbfrom=pubmed&retmode=ref&id=15643897},
+  doi            = {10.1021/ja0446855},
+  year           = 2005
+}
+
+@Article{Korzhnev05b,
   Author         = {Korzhnev, D. M. and Neudecker, P. and Mittermaier, A.
                    and Orekhov, V. Y. and Kay, L. E.},
   Title          = {Multiple-site exchange in proteins studied with a

Modified: trunk/docs/latex/dispersion.tex
URL: 
http://svn.gna.org/viewcvs/relax/trunk/docs/latex/dispersion.tex?rev=21872&r1=21871&r2=21872&view=diff
==============================================================================
--- trunk/docs/latex/dispersion.tex (original)
+++ trunk/docs/latex/dispersion.tex Sun Dec  8 23:05:40 2013
@@ -666,8 +666,8 @@
 in which
 \begin{subequations}
 \begin{align}
-    \delta_A &= \omegaA - \omegarf, \\
-    \delta_B &= \omegaB - \omegarf, \\
+    \delta_A &= \omegaA - \omegarf, \label{eq: deltaA}\\
+    \delta_B &= \omegaB - \omegarf, \label{eq: deltaB} \\
     \aveomega &= \pA\omegaA + \pB\omegaB, \\
     \aveoffset &= \aveomega - \omegarf, \\
     \omega_\textrm{Aeff}^2 &= \omegaone^2 + \delta_A^2, \\
@@ -769,6 +769,31 @@
 It is selected by setting the model to `NS R1rho 2-site'.
 The simple constraint $\pA > \pB$ is used to halve the optimisation space, 
as both sides of the limit are mirror image spaces.
 
+For this model, the equations from \citet{Korzhnev05a} have been used.  The 
$\Ronerho$ value for state A magnetisation is defined as
+\begin{equation}
+    \Ronerho = - \frac{1}{T_\textrm{relax}}  \cdot \ln \left( M_0^T \cdot 
e^{R \cdot T_\textrm{relax}} \cdot M_0 \right),
+\end{equation}
+
+where
+\begin{align}
+    M_0    &= \begin{pmatrix} \sin{\theta} \\ 0 \\ 0 \\ 0 \\ \cos{\theta} \\ 
0  \end{pmatrix}, \\
+    \theta &= \arctan \left( \frac{\omegaone}{\aveoffset} \right).
+\end{align}
+
+The relaxation evolution matrix is defined as
+\begin{equation}
+    R = -\begin{pmatrix}
+           \Ronerhoprime+\kAB & -\kBA              & \delta_A           & 0  
                & 0          & 0 \\
+           -\kAB              & \Ronerhoprime+\kBA & 0                  & 
\delta_B           & 0          & 0 \\
+           -\delta_A          & 0                  & \Ronerhoprime+\kAB & 
-\kBA              & \omegaone  & 0 \\
+           0                  & -\delta_B          & -\kAB              & 
\Ronerhoprime+\kBA & 0          & \omegaone \\
+           0                  & 0                  & -\omegaone         & 0  
                & \Rone+\kAB & -\kBA \\
+           0                  & 0                  & 0                  & 
-\omegaone         & -\kAB      & \Rone+\kBA \\
+         \end{pmatrix},
+\end{equation}
+
+where $\delta_{A,B}$ is defined in Equations~\ref{eq: deltaA} and~\ref{eq: 
deltaB}.
+
 
 
 % The analytic MMQ CPMG models.
@@ -832,7 +857,7 @@
 \begin{itemize}
 \item \bibentry{Korzhnev04a}
 \item \bibentry{Korzhnev04b}
-\item \bibentry{Korzhnev05}
+\item \bibentry{Korzhnev05b}
 \end{itemize}
 
 
@@ -855,7 +880,7 @@
 \label{sect: dispersion: NS MMQ 2-site model}
 \index{relaxation dispersion!NS MMQ 2-site model|textbf}
 
-This is the numerical model for 2-site exchange for proton-heteronuclear SQ, 
ZQ, DQ and MQ CPMG data, as derived in 
\citep{Korzhnev04a,Korzhnev04b,Korzhnev05}.
+This is the numerical model for 2-site exchange for proton-heteronuclear SQ, 
ZQ, DQ and MQ CPMG data, as derived in 
\citep{Korzhnev04a,Korzhnev04b,Korzhnev05b}.
 It is selected by setting the model to `NS MMQ 2-site'.
 The simple constraint $\pA > \pB$ is used to halve the optimisation space, 
as both sides of the limit are mirror image spaces.
 Different sets of equations are used for the different data types.
@@ -958,7 +983,7 @@
 \begin{itemize}
 \item \bibentry{Korzhnev04a}
 \item \bibentry{Korzhnev04b}
-\item \bibentry{Korzhnev05}
+\item \bibentry{Korzhnev05b}
 \end{itemize}
 
 
@@ -969,7 +994,7 @@
 \label{sect: dispersion: NS MMQ 3-site linear model}
 \index{relaxation dispersion!NS MMQ 3-site linear model|textbf}
 
-This is the numerical model for 3-site exchange for proton-heteronuclear SQ, 
ZQ, DQ and MQ CPMG data, as derived in 
\citep{Korzhnev04a,Korzhnev04b,Korzhnev05}.
+This is the numerical model for 3-site exchange for proton-heteronuclear SQ, 
ZQ, DQ and MQ CPMG data, as derived in 
\citep{Korzhnev04a,Korzhnev04b,Korzhnev05b}.
 As this model is linear, the assumption that $\kAC$~= $\kCA$~= 0 has been 
made.
 To simplify the optimisation space for the model, the assumption 
$\RtwozeroA$~= $\RtwozeroB$~= $\RtwozeroC$~= $\Rtwozero$ has also been made.
 
@@ -1045,7 +1070,7 @@
 \label{sect: dispersion: NS MMQ 3-site model}
 \index{relaxation dispersion!NS MMQ 3-site model|textbf}
 
-This is the numerical model for 3-site exchange for proton-heteronuclear SQ, 
ZQ, DQ and MQ CPMG data, as derived in 
\citep{Korzhnev04a,Korzhnev04b,Korzhnev05}.
+This is the numerical model for 3-site exchange for proton-heteronuclear SQ, 
ZQ, DQ and MQ CPMG data, as derived in 
\citep{Korzhnev04a,Korzhnev04b,Korzhnev05b}.
 However it has been extended to allow the $A \leftrightarrow C$ transition.
 To simplify the optimisation space for the model as in the `NS MMQ 3-site 
linear' model, the assumption $\RtwozeroA$~= $\RtwozeroB$~= $\RtwozeroC$~= 
$\Rtwozero$ has been made.
 

Modified: trunk/docs/latex/dispersion_models.tex
URL: 
http://svn.gna.org/viewcvs/relax/trunk/docs/latex/dispersion_models.tex?rev=21872&r1=21871&r2=21872&view=diff
==============================================================================
--- trunk/docs/latex/dispersion_models.tex (original)
+++ trunk/docs/latex/dispersion_models.tex Sun Dec  8 23:05:40 2013
@@ -55,10 +55,10 @@
 \cline{1-1}
 \\[-5pt]
 MMQ CR72                 & Analytic & 2     & $\{\Rtwozero, \dots, \pA, \dw, 
\dwH, \kex\}$        & $\pA > \pB$                       & 
\citet{Korzhnev04a} \\
-NS MMQ 2-site            & Numeric  & 2     & $\{\Rtwozero, \dots, \pA, \dw, 
\dwH, \kex\}$        & $\pA > \pB$                       & \citet{Korzhnev05} 
\\
-NS MMQ 3-site linear     & Numeric  & 3     & $\{\Rtwozero, \dots, \pA, \pB, 
\dwAB, \dwBC,$       & $\pA > \pB$ and $\pB > \pC$       & \citet{Korzhnev05} 
\\
+NS MMQ 2-site            & Numeric  & 2     & $\{\Rtwozero, \dots, \pA, \dw, 
\dwH, \kex\}$        & $\pA > \pB$                       & 
\citet{Korzhnev05b} \\
+NS MMQ 3-site linear     & Numeric  & 3     & $\{\Rtwozero, \dots, \pA, \pB, 
\dwAB, \dwBC,$       & $\pA > \pB$ and $\pB > \pC$       & 
\citet{Korzhnev05b} \\
                          &          &       & $\dwHAB, \dwHBC, \kexAB, 
\kexBC\}$ \\
-NS MMQ 3-site            & Numeric  & 3     & $\{\Rtwozero, \dots, \pA, \pB, 
\dwAB, \dwBC,$       & $\pA > \pB$ and $\pB > \pC$       & \citet{Korzhnev05} 
\\
+NS MMQ 3-site            & Numeric  & 3     & $\{\Rtwozero, \dots, \pA, \pB, 
\dwAB, \dwBC,$       & $\pA > \pB$ and $\pB > \pC$       & 
\citet{Korzhnev05b} \\
                          &          &       & $\dwHAB, \dwHBC, \kexAB, 
\kexBC, \kexAC\}$ \\
 
 % R1rho-type models.

Modified: trunk/lib/dispersion/ns_r1rho_2site.py
URL: 
http://svn.gna.org/viewcvs/relax/trunk/lib/dispersion/ns_r1rho_2site.py?rev=21872&r1=21871&r2=21872&view=diff
==============================================================================
--- trunk/lib/dispersion/ns_r1rho_2site.py (original)
+++ trunk/lib/dispersion/ns_r1rho_2site.py Sun Dec  8 23:05:40 2013
@@ -81,8 +81,10 @@
     # Repetitive calculations (to speed up calculations).
     Wa = omega                  # Larmor frequency [s^-1].
     Wb = omega + dw             # Larmor frequency [s^-1].
+    W = pA*Wa + pB*Wb           # Population-averaged Larmor frequency 
[s^-1].
     dA = Wa - offset            # Offset of spin-lock from A.
     dB = Wb - offset            # Offset of spin-lock from B.
+    d = W - offset              # Offset of spin-lock from 
population-average.
 
     # Loop over the time points, back calculating the R2eff values.
     for i in range(num_points):
@@ -90,23 +92,15 @@
         R = rr1rho_3d(R1=r1, Rinf=r1rho_prime, pA=pA, pB=pB, wA=dA, wB=dB, 
w1=spin_lock_fields[i], k_AB=k_AB, k_BA=k_BA)
 
         # The following lines rotate the magnetization previous to spin-lock 
into the weff frame.
-        # A new M0 is obtained:  M0 = [sin(thetaA)*pA sin(thetaB)*pB 0 0 
cos(thetaA)*pA cos(thetaB)*pB].
-        thetaA = atan(spin_lock_fields[i]/dA)
-        thetaB = atan(spin_lock_fields[i]/dB)
-        M0[0] = sin(thetaA) * pA
-        M0[1] = sin(thetaB) * pB
-        M0[4] = cos(thetaA) * pA
-        M0[5] = cos(thetaB) * pB
+        theta = atan(spin_lock_fields[i]/d)
+        M0[0] = sin(theta)
+        M0[4] = cos(theta)
 
         # This matrix is a propagator that will evolve the magnetization 
with the matrix R.
         Rexpo = matrix_exponential(R*relax_time)
 
         # Magnetization evolution.
-        Moft = dot(Rexpo, M0)
-        MAx = Moft[0].real / pA
-        MAy = Moft[2].real / pA
-        MAz = Moft[4].real / pA
-        MA = sqrt(MAx**2 + MAy**2 + MAz**2)    # For spin A, is equal to 1 
if nothing happens (no relaxation).
+        MA = dot(M0, dot(Rexpo, M0))
 
         # The next lines calculate the R1rho using a two-point 
approximation, i.e. assuming that the decay is mono-exponential.
         if MA <= 0.0 or isNaN(MA):

Modified: trunk/target_functions/relax_disp.py
URL: 
http://svn.gna.org/viewcvs/relax/trunk/target_functions/relax_disp.py?rev=21872&r1=21871&r2=21872&view=diff
==============================================================================
--- trunk/target_functions/relax_disp.py (original)
+++ trunk/target_functions/relax_disp.py Sun Dec  8 23:05:40 2013
@@ -1500,10 +1500,6 @@
         k_BA = pA * kex
         k_AB = pB * kex
 
-        # This is a vector that contains the initial magnetizations 
corresponding to the A and B state transverse magnetizations.
-        self.M0[0] = pA
-        self.M0[1] = pB
-
         # Chi-squared initialisation.
         chi2_sum = 0.0
 




Related Messages


Powered by MHonArc, Updated Sun Dec 08 23:20:02 2013