mailr21909 - in /trunk/docs/latex: dispersion.tex dispersion_models.tex dispersion_software.tex relax.tex


Others Months | Index by Date | Thread Index
>>   [Date Prev] [Date Next] [Thread Prev] [Thread Next]

Header


Content

Posted by edward on December 09, 2013 - 16:05:
Author: bugman
Date: Mon Dec  9 16:05:35 2013
New Revision: 21909

URL: http://svn.gna.org/viewcvs/relax?rev=21909&view=rev
Log:
Added the 'NS R1rho 3-site' models to the relax user manual.

This is for the 'NS R1rho 3-site' and 'NS R1rho 3-site linear' dispersion 
models.

This follows the tutorial for adding relaxation dispersion models at:
http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#The_relax_manual.


Modified:
    trunk/docs/latex/dispersion.tex
    trunk/docs/latex/dispersion_models.tex
    trunk/docs/latex/dispersion_software.tex
    trunk/docs/latex/relax.tex

Modified: trunk/docs/latex/dispersion.tex
URL: 
http://svn.gna.org/viewcvs/relax/trunk/docs/latex/dispersion.tex?rev=21909&r1=21908&r2=21909&view=diff
==============================================================================
--- trunk/docs/latex/dispersion.tex (original)
+++ trunk/docs/latex/dispersion.tex Mon Dec  9 16:05:35 2013
@@ -127,6 +127,8 @@
 
 \begin{description}
 \item[`NS R1rho 2-site':]\index{relaxation dispersion!NS R1rho 2-site model} 
 The model for 2-site exchange using 3D magnetisation vectors.  It has the 
parameters $\{\Ronerhoprime, \dots, \pA, \dw, \kex\}$.  See 
Section~\ref{sect: dispersion: NS R1rho 2-site model} on page~\pageref{sect: 
dispersion: NS R1rho 2-site model}.
+\item[`NS $\Ronerho$ 3-site linear':]\index{relaxation dispersion!NS R1rho 
3-site linear model}  The model for 3-site exchange linearised with 
$\kAC=\kCA=0$ whereby the simplification $\RonerhoprimeA = \RonerhoprimeB = 
\RonerhoprimeC$ is assumed.  It has the parameters \{$\Ronerhoprime$, 
$\dots$, $\pA$, $\pB$, $\dwAB$, $\dwBC$, $\kexAB$, $\kexBC$\}.  See 
Section~\ref{sect: dispersion: NS R1rho 3-site linear model} on 
page~\pageref{sect: dispersion: NS R1rho 3-site linear model}.
+\item[`NS $\Ronerho$ 3-site':]\index{relaxation dispersion!NS R1rho 3-site 
model}  The model for 3-site exchange whereby the simplification 
$\RonerhoprimeA = \RonerhoprimeB = \RonerhoprimeC$ is assumed.  It has the 
parameters \{$\Ronerhoprime$, $\dots$, $\pA$, $\pB$, $\dwAB$, $\dwBC$, 
$\kexAB$, $\kexBC$, $\kexAC$\}.  See Section~\ref{sect: dispersion: NS R1rho 
3-site model} on page~\pageref{sect: dispersion: NS R1rho 3-site model}.
 \end{description}
 
 
@@ -1128,6 +1130,143 @@
 where $\delta_{A,B}$ is defined in Equations~\ref{eq: deltaA} and~\ref{eq: 
deltaB}.
 
 
+% NS R1rho 3-site model.
+%~~~~~~~~~~~~~~~~~~~~~~~
+
+\subsection{The NS 3-site $\Ronerho$ model}
+\label{sect: dispersion: NS R1rho 3-site model}
+\index{relaxation dispersion!NS R1rho 3-site model|textbf}
+
+This is the numerical model for 3-site exchange using 3D magnetisation 
vectors.
+It is selected by setting the model to `NS R1rho 3-site'.
+The constraints $\pA > \pB$ and $\pA > \pC$ is used to decrease the size of 
the optimisation space, as both sides of the limit are mirror image spaces.
+
+For this model, as for the 2-site model above, the equations from 
\citet{Korzhnev05a} have been used.
+These have been however rearranged to match the notation in 
\citet{PalmerMassi06}.
+The $\Ronerho$ value for state A magnetisation is defined as
+\begin{equation}
+    \Ronerho = - \frac{1}{T_\textrm{relax}}  \cdot \ln \left( M_0^T \cdot 
e^{R \cdot T_\textrm{relax}} \cdot M_0 \right),
+\end{equation}
+
+where
+\begin{align}
+    M_0    &= \begin{pmatrix} \sin{\theta} \\ 0 \\ \cos{\theta} \\ 0 \\ 0 \\ 
0 \\ 0 \\ 0 \\ 0  \end{pmatrix}, \\
+    \theta &= \arctan \left( \frac{\omegaone}{\aveoffset} \right).
+\end{align}
+
+This assumes that the starting magnetisation has an X and Z component only 
for the A state.
+The relaxation evolution matrix is defined as
+\begin{align}
+    R &= \begin{pmatrix}
+           -\RonerhoprimeA-\kAB-\kAC & -\delta_A                 & 0         
        & \cdots \\
+           \delta_A                  & -\RonerhoprimeA-\kAB-\kAC & 
-\omegaone        & \cdots \\
+           0                         & \omegaone                 & 
-\RoneA-\kAB-\kAC & \cdots \\
+           \vdots                    & \vdots                    & \vdots    
        & \ddots \\
+         \end{pmatrix} \nonumber \\
+      &+ \begin{pmatrix}
+           \ddots  & \vdots                    & \vdots                    & 
\vdots            & \iddots \\
+           \cdots  & -\RonerhoprimeB-\kBA-\kBC & -\delta_B                 & 
0                 & \cdots \\
+           \cdots  & \delta_B                  & -\RonerhoprimeB-\kBA-\kBC & 
-\omegaone        & \cdots \\
+           \cdots  & 0                         & \omegaone                 & 
-\RoneB-\kBA-\kBC & \cdots \\
+           \iddots & \vdots                    & \vdots                    & 
\vdots            & \ddots \\
+         \end{pmatrix} \nonumber \\
+      &+ \begin{pmatrix}
+           \ddots & \vdots                    & \vdots                    & 
\vdots \\
+           \cdots & -\RonerhoprimeC-\kCA-\kCB & -\delta_C                 & 
0 \\
+           \cdots & \delta_C                  & -\RonerhoprimeC-\kCA-\kCB & 
-\omegaone \\
+           \cdots & 0                         & \omegaone                 & 
-\RoneC-\kCA-\kCB \\
+         \end{pmatrix} \nonumber \\
+      &+ \begin{pmatrix}
+                   &         &         & \kAB    & 0       & 0       & 
\cdots \\
+                   & \ddots  &         & 0       & \kAB    & 0       & 
\cdots \\
+                   &         &         & 0       & 0       & \kAB    & 
\cdots \\
+           \kBA    & 0       & 0       &         &         &         & \\
+           0       & \kBA    & 0       &         & \ddots  &         & 
\cdots\\
+           0       & 0       & \kBA    &         &         &         & \\
+           \vdots  & \vdots  & \vdots  &         & \vdots  &         & 
\ddots \\
+         \end{pmatrix} \nonumber \\
+      &+ \begin{pmatrix}
+                   &         &         & \cdots  & \kAC    & 0       & 0 \\
+                   & \ddots  &         & \cdots  & 0       & \kAC    & 0 \\
+                   &         &         & \cdots  & 0       & 0       & \kAC 
\\
+           \vdots  & \vdots  & \vdots  & \ddots  & \vdots  & \vdots  & 
\vdots \\
+           \kCA    & 0       & 0       & \cdots  &         &         & \\
+           0       & \kCA    & 0       & \cdots  &         & \ddots  &  \\   
    
+           0       & 0       & \kCA    & \cdots  &         &         & \\
+         \end{pmatrix} \nonumber \\
+      &+ \begin{pmatrix}
+           \ddots  &         & \vdots  &         & \vdots  & \vdots  & 
\vdots \\
+                   &         &         &         & \kBC    & 0       & 0 \\
+           \cdots  &         & \ddots  &         & 0       & \kBC    & 0 \\
+                   &         &         &         & 0       & 0       & \kBC 
\\
+           \cdots  & \kCB    & 0       & 0       &         &         &  \\
+           \cdots  & 0       & \kCB    & 0       &         & \ddots  &  \\
+           \cdots  & 0       & 0       & \kCB    &         &         &  \\
+         \end{pmatrix},
+\end{align}
+
+where $\delta_{A,B,C}$ are defined as in Equations~\ref{eq: deltaA} 
and~\ref{eq: deltaB}.
+For the model, the assumptions $\RonerhoprimeA$ = $\RonerhoprimeB$ = 
$\RonerhoprimeC$ = $\Ronerhoprime$ and $\RoneA$ = $\RoneB$ = $\RoneC$ = 
$\Rone$ have been made.
+
+
+% NS R1rho 3-site linear model.
+%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+\subsection{The NS 3-site linear $\Ronerho$ model}
+\label{sect: dispersion: NS R1rho 3-site linear model}
+\index{relaxation dispersion!NS R1rho 3-site linear model|textbf}
+
+This is the numerical model for 3-site linear exchange using 3D 
magnetisation vectors.
+The assumption that $\kAC$~= $\kCA$~= 0 has been made to linearise this 
model.
+It is selected by setting the model to `NS R1rho 3-site linear'.
+The constraints $\pA > \pB$ and $\pA > \pC$ is used to decrease the size of 
the optimisation space, as both sides of the limit are mirror image spaces.
+To simplify the optimisation space for the model as in the `NS $\Ronerho$ 
3-site' model, the assumptions $\RtwozeroA$~= $\RtwozeroB$~= $\RtwozeroC$~= 
$\Rtwozero$ and $\RoneA$ = $\RoneB$ = $\RoneC$ = $\Rone$ have been made.
+
+The equations are the same as for the `NS R1rho 3-site' model except for the 
relaxation evolution matrix which simplifies to
+\begin{align}
+    R &= \begin{pmatrix}
+           -\RonerhoprimeA-\kAB & -\delta_A            & 0            & 
\cdots \\
+           \delta_A             & -\RonerhoprimeA-\kAB & -\omegaone   & 
\cdots \\
+           0                    & \omegaone            & -\RoneA-\kAB & 
\cdots \\
+           \vdots               & \vdots               & \vdots       & 
\ddots \\
+         \end{pmatrix} \nonumber \\
+      &+ \begin{pmatrix}
+           \ddots  & \vdots                    & \vdots                    & 
\vdots            & \iddots \\
+           \cdots  & -\RonerhoprimeB-\kBA-\kBC & -\delta_B                 & 
0                 & \cdots \\
+           \cdots  & \delta_B                  & -\RonerhoprimeB-\kBA-\kBC & 
-\omegaone        & \cdots \\
+           \cdots  & 0                         & \omegaone                 & 
-\RoneB-\kBA-\kBC & \cdots \\
+           \iddots & \vdots                    & \vdots                    & 
\vdots            & \ddots \\
+         \end{pmatrix} \nonumber \\
+      &+ \begin{pmatrix}
+           \ddots & \vdots               & \vdots               & \vdots \\
+           \cdots & -\RonerhoprimeC-\kCB & -\delta_C            & 0 \\
+           \cdots & \delta_C             & -\RonerhoprimeC-\kCB & -\omegaone 
\\
+           \cdots & 0                    & \omegaone            & 
-\RoneC-\kCB \\
+         \end{pmatrix} \nonumber \\
+      &+ \begin{pmatrix}
+                   &         &         & \kAB    & 0       & 0       & 
\cdots \\
+                   & \ddots  &         & 0       & \kAB    & 0       & 
\cdots \\
+                   &         &         & 0       & 0       & \kAB    & 
\cdots \\
+           \kBA    & 0       & 0       &         &         &         & \\
+           0       & \kBA    & 0       &         & \ddots  &         & 
\cdots\\
+           0       & 0       & \kBA    &         &         &         & \\
+           \vdots  & \vdots  & \vdots  &         & \vdots  &         & 
\ddots \\
+         \end{pmatrix} \nonumber \\
+      &+ \begin{pmatrix}
+           \ddots  &         & \vdots  &         & \vdots  & \vdots  & 
\vdots \\
+                   &         &         &         & \kBC    & 0       & 0 \\
+           \cdots  &         & \ddots  &         & 0       & \kBC    & 0 \\
+                   &         &         &         & 0       & 0       & \kBC 
\\
+           \cdots  & \kCB    & 0       & 0       &         &         &  \\
+           \cdots  & 0       & \kCB    & 0       &         & \ddots  &  \\
+           \cdots  & 0       & 0       & \kCB    &         &         &  \\
+         \end{pmatrix},
+\end{align}
+
+where $\delta_{A,B,C}$ are defined as in Equations~\ref{eq: deltaA} 
and~\ref{eq: deltaB}.
+For the model, the assumptions $\RonerhoprimeA$ = $\RonerhoprimeB$ = 
$\RonerhoprimeC$ = $\Ronerhoprime$ and  $\RoneA$ = $\RoneB$ = $\RoneC$ = 
$\Rone$ have been made.
+
+
 
 % Relaxation dispersion optimisation theory.
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@@ -1596,8 +1735,6 @@
 Some of the missing models include:
 \begin{description}
 \item[`TP04':]\index{relaxation dispersion!TP04 model}  The $\Ronerho$-type 
data \citet{TrottPalmer04} N-site analytic equation for all time scales with 
parameters $\{\Ronerhoprime, \dots, \pone, \dots, \pN, \aveomega, \konetwo, 
\dots\, \koneN\}$.
-\item[`NS $\Ronerho$ 3-site linear':]\index{relaxation dispersion!NS R1rho 
3-site linear model}  The model of the numeric solution for linear 3-site 
exchange for $\Ronerho$-type data.
-\item[`NS $\Ronerho$ 3-site':]\index{relaxation dispersion!NS R1rho 3-site 
model}  Similar to the `NS $\Ronerho$ 3-site linear' model but with one of 
the $\kex$ parameters not set to zero.
 \item[`* $\Ronerho$':]  All of the 3-site and N-site models as summarised in 
Table~1 of \citet{PalmerMassi06}.
 \end{description}
 

Modified: trunk/docs/latex/dispersion_models.tex
URL: 
http://svn.gna.org/viewcvs/relax/trunk/docs/latex/dispersion_models.tex?rev=21909&r1=21908&r2=21909&view=diff
==============================================================================
--- trunk/docs/latex/dispersion_models.tex (original)
+++ trunk/docs/latex/dispersion_models.tex Mon Dec  9 16:05:35 2013
@@ -75,10 +75,10 @@
 TP04\footnotemark[1]     & Analytic & N     & $\{\Ronerhoprime, \dots, 
\pone, \dots, \pN, \aveomega, \konetwo, \dots\, \koneN\}$    & One site 
dominant        & \citet{TrottPalmer04} \\
 MP05                     & Analytic & 2     & $\{\Ronerhoprime, \dots, \pA, 
\dw, \kex\}$          & $\pA > \pB$                       & 
\citet{MiloushevPalmer05} \\
 NS R1rho 2-site          & Numeric  & 2     & $\{\Ronerhoprime, \dots, \pA, 
\dw, \kex\}$          & $\pA > \pB$                       & - \\
-NS R1rho 3-site linear\footnotemark[1] & Numeric & 3    & $\{\Ronerhoprime, 
\dots, \pA, \pB, \dwAB, \dwBC,$   & $\pA > \pB$ and $\pA > \pC$       & - \\
-                         &          &       & $\dwHAB, \dwHBC, \kexAB, 
\kexBC\}$ \\
-NS R1rho 3-site\footnotemark[1]        & Numeric & 3    & $\{\Ronerhoprime, 
\dots, \pA, \pB, \dwAB, \dwBC,$   & $\pA > \pB$ and $\pA > \pC$       & - \\
-                         &          &       & $\dwHAB, \dwHBC, \kexAB, 
\kexBC, \kexAC\}$ \\
+NS R1rho 3-site linear   & Numeric  & 3     & $\{\Ronerhoprime, \dots, \pA, 
\pB, \dwAB, \dwBC,$   & $\pA > \pB$ and $\pA > \pC$       & - \\
+                         &          &       & $\kexAB, \kexBC\}$ \\
+NS R1rho 3-site          & Numeric  & 3     & $\{\Ronerhoprime, \dots, \pA, 
\pB, \dwAB, \dwBC,$   & $\pA > \pB$ and $\pA > \pC$       & - \\
+                         &          &       & $\kexAB, \kexBC, \kexAC\}$ \\
 
 \footnotetext[1]{Not implemented yet}
 

Modified: trunk/docs/latex/dispersion_software.tex
URL: 
http://svn.gna.org/viewcvs/relax/trunk/docs/latex/dispersion_software.tex?rev=21909&r1=21908&r2=21909&view=diff
==============================================================================
--- trunk/docs/latex/dispersion_software.tex (original)
+++ trunk/docs/latex/dispersion_software.tex Mon Dec  9 16:05:35 2013
@@ -67,8 +67,8 @@
 TP04                        & \no  & \no  & \no  & \no  & \no  & \no  & \no  
& \no  & \no  \\
 MP05                        & \no  & \no  & \no  & \no  & \no  & \no  & \no  
& \no  & \yes \\
 NS $\Ronerho$ 2-site        & \no  & \yes & \no  & \no  & \no  & \no  & ?    
& \no  & \yes \\
-NS $\Ronerho$ 3-site linear & \no  & \yes & \no  & \no  & \no  & \no  & \no  
& \no  & \no  \\
-NS $\Ronerho$ 3-site        & \no  & \yes & \no  & \no  & \no  & \no  & \no  
& \no  & \no  \\
+NS $\Ronerho$ 3-site linear & \no  & \yes & \no  & \no  & \no  & \no  & \no  
& \no  & \yes \\
+NS $\Ronerho$ 3-site        & \no  & \yes & \no  & \no  & \no  & \no  & \no  
& \no  & \yes \\
 
 \midrule
 \vspace{-5pt} \\

Modified: trunk/docs/latex/relax.tex
URL: 
http://svn.gna.org/viewcvs/relax/trunk/docs/latex/relax.tex?rev=21909&r1=21908&r2=21909&view=diff
==============================================================================
--- trunk/docs/latex/relax.tex (original)
+++ trunk/docs/latex/relax.tex Mon Dec  9 16:05:35 2013
@@ -40,6 +40,7 @@
 % Better maths.
 \usepackage{amsmath}
 \usepackage{amssymb}
+\usepackage{mathdots}
 
 % Source code and scripts.
 \usepackage[procnames]{listings}
@@ -181,7 +182,13 @@
 \newcommand{\PhiexC}{\Phi_\textrm{ex,C}}
 \newcommand{\Phiexi}{\Phi_\textrm{ex,i}}
 \newcommand{\Rex}{\mathrm{R}_\textrm{ex}}
+\newcommand{\RoneA}{\mathrm{R}_\textrm{1A}}
+\newcommand{\RoneB}{\mathrm{R}_\textrm{1B}}
+\newcommand{\RoneC}{\mathrm{R}_\textrm{1C}}
 \newcommand{\Ronerhoprime}{\mathrm{R}_{1\rho}'}
+\newcommand{\RonerhoprimeA}{\mathrm{R}_{1\rho A}'}
+\newcommand{\RonerhoprimeB}{\mathrm{R}_{1\rho B}'}
+\newcommand{\RonerhoprimeC}{\mathrm{R}_{1\rho C}'}
 \newcommand{\Rtwoeff}{\mathrm{R}_\textrm{2eff}}
 \newcommand{\Rtwozero}{\mathrm{R}_2^0}
 \newcommand{\RtwozeroA}{\mathrm{R}_\mathrm{2A}^0}




Related Messages


Powered by MHonArc, Updated Mon Dec 09 16:40:02 2013