mailr23030 - /trunk/docs/latex/dispersion.tex


Others Months | Index by Date | Thread Index
>>   [Date Prev] [Date Next] [Thread Prev] [Thread Next]

Header


Content

Posted by tlinnet on May 07, 2014 - 10:14:
Author: tlinnet
Date: Wed May  7 10:14:09 2014
New Revision: 23030

URL: http://svn.gna.org/viewcvs/relax?rev=23030&view=rev
Log:
Used LaTeX subequations instead, and using  R2eff parameter is defined in the 
relax.tex

Using the defined \Rtwoeff, \RtwozeroA, \RtwozeroB, \kAB, \kBA, \kex.

sr #3154: (https://gna.org/support/?3154) Implementation of Baldwin (2014) 
B14 model - 2-site exact solution model for all time scales.

This follows the tutorial for adding relaxation dispersion models at:
http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#The_relax_manual

Modified:
    trunk/docs/latex/dispersion.tex

Modified: trunk/docs/latex/dispersion.tex
URL: 
http://svn.gna.org/viewcvs/relax/trunk/docs/latex/dispersion.tex?rev=23030&r1=23029&r2=23030&view=diff
==============================================================================
--- trunk/docs/latex/dispersion.tex     (original)
+++ trunk/docs/latex/dispersion.tex     Wed May  7 10:14:09 2014
@@ -565,21 +565,26 @@
 This is the model for 2-site exchange exact analytical derivation on all 
time scales (with the constraint that $\pA > \pB$), named after 
\citet{Baldwin2014}.
 It is selected by setting the model to `B14 full'.
 The equation is
-\begin{eqnarray}
-  R_{2,\textrm{eff}} & = & 
\frac{R_2^A+R_2^B+k_{\textrm{EX}}}{2}-\frac{N_{\textrm{CYC}}}{T_{\textrm{rel}}}\cosh{}^{-1}(v_{1c})
 \nonumber \\
-                     & - &  \frac{1}{T_{\textrm{rel}}}\ln{\left( 
\frac{1+y}{2} + \frac{1-y}{2\sqrt{v_{1c}^2-1}}(v_2 + 2k_{\textrm{AB}}p_D 
)\right)} \nonumber \\
-    & = & R_{2,\textrm{eff}}^{\textrm{CR72}} - 
\frac{1}{T_{\textrm{rel}}}\ln{\left( \frac{1+y}{2} + 
\frac{1-y}{2\sqrt{v_{1c}^2-1}}(v_2 + 2k_{\textrm{AB}}p_D )\right)} ,
-\end{eqnarray}
+\begin{subequations}
+\begin{align}
+  \Rtwoeff & = \frac{\RtwozeroA + \RtwozeroB + \kex }{2}-\frac{ 
N_{\textrm{CYC}} }{ T_{\textrm{rel}} } \cosh{}^{-1}(v_{1c}) \\
+                     & - \frac{1}{T_{\textrm{rel}}}\ln{\left( \frac{1+y}{2} 
+ \frac{1-y}{2\sqrt{v_{1c}^2-1}}(v_2 + 2 \kAB p_D )\right)} \\
+    & = \Rtwoeff^{\textrm{CR72}} - \frac{1}{T_{\textrm{rel}}}\ln{\left( 
\frac{1+y}{2} + \frac{1-y}{2\sqrt{v_{1c}^2-1}}(v_2 + 2\kAB p_D )\right)} ,
+\end{align}
+\end{subequations}
+
 
 where
-\begin{eqnarray}
-    v_{1c} & = & 
F_0\cosh{\left(\tau_{\textrm{CP}}E_0\right)}-F_2\cosh{\left(\tau_{\textrm{CP}}E_2\right)}
 \nonumber \\
-    v_{1s} & = & 
F_0\sinh{\left(\tau_{\textrm{CP}}E_0\right)}-F_2\sinh{\left(\tau_{\textrm{CP}}E_2\right)}
 \nonumber \\
-    v_{2}N & = & v_{1s}\left(O_B-O_A\right)+4O_B F_1^a 
\sinh{\left(\tau_{\textrm{CP}}E_1\right)} \nonumber \\
-    p_D N & = & v_{1s} + 
\left(F_1^a+F_1^b\right)\sinh{\left(\tau_{\textrm{CP}}E_1\right)} \nonumber \\
-    v_3 & = & \left( v_2^2 + 4 k_{\textrm{BA}} k_{\textrm{AB}} p_D^2 
\right)^{1/2} \nonumber \\
-    y & = & \left( \frac{v_{1c}-v_3}{v_{1c}+v_3} \right)^{N_{\textrm{CYC}}}
-\end{eqnarray}
+\begin{subequations}
+\begin{align}
+    v_{1c} & = 
F_0\cosh{\left(\tau_{\textrm{CP}}E_0\right)}-F_2\cosh{\left(\tau_{\textrm{CP}}E_2\right)}
 \\
+    v_{1s} & = 
F_0\sinh{\left(\tau_{\textrm{CP}}E_0\right)}-F_2\sinh{\left(\tau_{\textrm{CP}}E_2\right)}
  \\
+    v_{2}N & = v_{1s}\left(O_B-O_A\right)+4O_B F_1^a 
\sinh{\left(\tau_{\textrm{CP}}E_1\right)} \nonumber \\
+    p_D N & = v_{1s} + 
\left(F_1^a+F_1^b\right)\sinh{\left(\tau_{\textrm{CP}}E_1\right)} \\
+    v_3 & = \left( v_2^2 + 4 \kBA \kAB p_D^2 \right)^{1/2} \\
+    y & = \left( \frac{v_{1c}-v_3}{v_{1c}+v_3} \right)^{N_{\textrm{CYC}}}
+\end{align}
+\end{subequations}
 
 The advantage of this code will be that you will always get the right answer 
provided you got 2-site exchange, in-phase magnetisation and on-resonance 
pulses. 
 




Related Messages


Powered by MHonArc, Updated Wed May 07 10:40:02 2014