mailr23099 - /trunk/docs/latex/dispersion.tex


Others Months | Index by Date | Thread Index
>>   [Date Prev] [Date Next] [Thread Prev] [Thread Next]

Header


Content

Posted by edward on May 08, 2014 - 19:48:
Author: bugman
Date: Thu May  8 19:48:53 2014
New Revision: 23099

URL: http://svn.gna.org/viewcvs/relax?rev=23099&view=rev
Log:
Added proper punctuation to the B14 dispersion model equations in the manual.

Equations should be readable as English sentences and they follow standard 
punctuation rules.  All
of the equations in the B14 model section of the dispersion chapter have been 
updated to follow
this.


Modified:
    trunk/docs/latex/dispersion.tex

Modified: trunk/docs/latex/dispersion.tex
URL: 
http://svn.gna.org/viewcvs/relax/trunk/docs/latex/dispersion.tex?rev=23099&r1=23098&r2=23099&view=diff
==============================================================================
--- trunk/docs/latex/dispersion.tex     (original)
+++ trunk/docs/latex/dispersion.tex     Thu May  8 19:48:53 2014
@@ -568,66 +568,65 @@
 \begin{subequations}
 \begin{align}
   \Rtwoeff & = \frac{\RtwozeroA + \RtwozeroB + \kex }{2}-\frac{ 
N_{\textrm{CYC}} }{ \taucpmg } \cosh{}^{-1}(v_{1c}) \nonumber \\
-& \qquad - \frac{1}{\taucpmg}\ln{\left(\frac{1+y}{2} + 
\frac{1-y}{2\sqrt{v_{1c}^2-1}}(v_2 + 2 \kAB p_D)\right)} \\
+& \qquad - \frac{1}{\taucpmg}\ln{\left(\frac{1+y}{2} + 
\frac{1-y}{2\sqrt{v_{1c}^2-1}}(v_2 + 2 \kAB p_D)\right)} , \\
     & = \Rtwoeff^{\textrm{CR72}} - \frac{1}{\taucpmg}\ln{\left( 
\frac{1+y}{2} + \frac{1-y}{2\sqrt{v_{1c}^2-1}}(v_2 + 2\kAB p_D )\right)} ,
 \end{align}
 \end{subequations}
 
-
 where Appendix 1 in \citet{Baldwin2014} list the recipe for exact 
calculation of $\Rtwoeff$.
 
-Establish the complex free precession Eigenfrequency.
+Establish the complex free precession Eigenfrequency with
 \begin{subequations}
 \begin{align}
-       \Delta \Rtwozero & = \RtwozeroA - \RtwozeroB  \\
-       \alpha_- & = \Delta \Rtwozero + \kAB - \kBA \\
-       \zeta & = 2 \dw \alpha_- \\
-       \Psi & = \alpha_-^2 + 4 \kAB \kBA - \dw^2 \\
-       h_3 &= \frac{1}{\sqrt{2}}\sqrt{ \Psi + \sqrt{\zeta^2 + \Psi^2} } \\
-    h_4 &= \frac{1}{\sqrt{2}}\sqrt{ -\Psi + \sqrt{\zeta^2 + \Psi^2} }
+       \Delta \Rtwozero & = \RtwozeroA - \RtwozeroB , \\
+       \alpha_- & = \Delta \Rtwozero + \kAB - \kBA , \\
+       \zeta & = 2 \dw \alpha_- , \\
+       \Psi & = \alpha_-^2 + 4 \kAB \kBA - \dw^2 , \\
+       h_3 &= \frac{1}{\sqrt{2}}\sqrt{ \Psi + \sqrt{\zeta^2 + \Psi^2} } , \\
+    h_4 &= \frac{1}{\sqrt{2}}\sqrt{ -\Psi + \sqrt{\zeta^2 + \Psi^2} } .
 \end{align}
 \end{subequations}
 
 The ground state ensemble evolution frequency $f_{00}$ expressed in 
separated real and imaginary components, in terms
-of definitions $\zeta , \Psi , h_3 , h_4$.
+of definitions $\zeta , \Psi , h_3 , h_4$ is
 \begin{equation}
-       f_{00} = \frac{1}{2}(\RtwozeroA + \RtwozeroB + \kex) + 
\frac{1}{2}(\dw - h_4) i
-\end{equation}
-
-Define substutions for 'stay' and 'swap' factors.
+       f_{00} = \frac{1}{2}(\RtwozeroA + \RtwozeroB + \kex) + 
\frac{1}{2}(\dw - h_4) i .
+\end{equation}
+
+Define substutions for 'stay' and 'swap' factors are
 \begin{subequations}
 \begin{align}
-       N & = h_3 + h_4 i \\
-       NN^* & = h_3^2 + h_42 \\
-       F_0 & = (\dw^2 + h_3^2) / NN^* \\
-       F_2 & = (\dw^2 - h_4^2) / NN^* \\
-       F_1^b & = (\dw + h_4) (\dw - h_3 i) / NN^* \\
-       F_1^{a+b} & = (2\dw^2 + \zeta i) / NN^*
+       N & = h_3 + h_4 i , \\
+       NN^* & = h_3^2 + h_42 , \\
+       F_0 & = (\dw^2 + h_3^2) / NN^* , \\
+       F_2 & = (\dw^2 - h_4^2) / NN^* , \\
+       F_1^b & = (\dw + h_4) (\dw - h_3 i) / NN^* , \\
+       F_1^{a+b} & = (2\dw^2 + \zeta i) / NN^* .
 \end{align}
 \end{subequations}
 
-Weighting factors for frequencies ($E_{0-2}$) emerging from a single CPMG 
block, ($F_{0-2}$).
-Here $\taucpmg = 1 / 4\nucpmg $.
+Weighting factors for frequencies ($E_{0-2}$) emerging from a single CPMG 
block, ($F_{0-2}$), are
 \begin{subequations}
 \begin{align}
-       E_0 & =  2 \taucpmg \cdot h_3 \\
-       E2 & =  2 \taucpmg \cdot  h_4 \\
-       E1 & = (h_3 - h_4 i) \cdot \taucpmg
+       E_0 & =  2 \taucpmg \cdot h_3 , \\
+       E2 & =  2 \taucpmg \cdot  h_4 , \\
+       E1 & = (h_3 - h_4 i) \cdot \taucpmg .
 \end{align}
 \end{subequations}
 
-Final result, with identities to assist efficient matrix exponentiation 
optimised for numerical calculation.
+Here $\taucpmg = 1 / 4\nucpmg $.
+Final result, with identities to assist efficient matrix exponentiation 
optimised for numerical calculation is
 \begin{subequations}
 \begin{align}
-       \nu_{1c} & = F_0  \cosh(E_0) - F_2 \cos(E_2) \\
-       \nu_{1s} & = F_0  \sinh(E_0) - F_2 \sin(E_2)i \\
-       \nu_{3} & = \sqrt{\nu_{1c}^2 - 1} \\
-       \nu_{4} & = F_1^b (-\alpha_- - h_3 ) + F_1^b (\dw - h_4) i \\
-       \nu_{5} & =(-\Delta \Rtwozero + \kex + \dw i) \nu_{1s} + 2 (\nu_{4} + 
\kAB F_1^{a+b}) \sinh(E_1) \\
-       y & = \left( \frac{\nu_{1c} - \nu_{3}}{\nu_{1c} + \nu_{3}} \right) ^ 
{N_{\textrm{CYC}}} \\
-       T & = \frac{1}{2}(1 + y) + \frac{(1 - y)\nu_{5}}{2 \nu_{3}N} \\
-       \Rtwoeff{}_{\_ \textrm{CR72}} & = \frac{(\RtwozeroA + \RtwozeroB + 
\kex)}{2} - \frac{N_{\textrm{CYC}}}{\taucpmg} \, \textrm{arcosh}(\, 
\operatorname{Re}(\nu_{1c}) \, ) \\
-       \Rtwoeff{} & = \Rtwoeff{}_{\_ \textrm{CR72}} - \frac{1}{\taucpmg} 
\log(\operatorname{Re}(T))
+       \nu_{1c} & = F_0  \cosh(E_0) - F_2 \cos(E_2) , \\
+       \nu_{1s} & = F_0  \sinh(E_0) - F_2 \sin(E_2)i , \\
+       \nu_{3} & = \sqrt{\nu_{1c}^2 - 1} , \\
+       \nu_{4} & = F_1^b (-\alpha_- - h_3 ) + F_1^b (\dw - h_4) i , \\
+       \nu_{5} & =(-\Delta \Rtwozero + \kex + \dw i) \nu_{1s} + 2 (\nu_{4} + 
\kAB F_1^{a+b}) \sinh(E_1) , \\
+       y & = \left( \frac{\nu_{1c} - \nu_{3}}{\nu_{1c} + \nu_{3}} \right) ^ 
{N_{\textrm{CYC}}} , \\
+       T & = \frac{1}{2}(1 + y) + \frac{(1 - y)\nu_{5}}{2 \nu_{3}N} , \\
+       \Rtwoeff{}_{\_ \textrm{CR72}} & = \frac{(\RtwozeroA + \RtwozeroB + 
\kex)}{2} - \frac{N_{\textrm{CYC}}}{\taucpmg} \, \textrm{arcosh}(\, 
\operatorname{Re}(\nu_{1c}) \, ) , \\
+       \Rtwoeff{} & = \Rtwoeff{}_{\_ \textrm{CR72}} - \frac{1}{\taucpmg} 
\log(\operatorname{Re}(T)) .
 \end{align}
 \end{subequations}
 
@@ -636,9 +635,8 @@
 The term $p_D$ is based on product of the off diagonal elements in the CPMG 
propagator, see supplementary Section 3, \citet{Baldwin2014}.
 
 It is interesting to consider the region of validity of the Carver Richards 
result. The two results are equal when the correction is zero, which is true 
when
-
 \begin{equation}
-    \sqrt{v_{1c}^2-1} \approx v_2 + 2k_{\textrm{AB}}p_D
+    \sqrt{v_{1c}^2-1} \approx v_2 + 2k_{\textrm{AB}}p_D .
 \end{equation}
 
 This occurs when $k_{\textrm{AB}}p_D$ tends to zero, and so $v_2=v_3$.




Related Messages


Powered by MHonArc, Updated Thu May 08 20:00:02 2014