mailr23118 - /trunk/docs/latex/dispersion.tex


Others Months | Index by Date | Thread Index
>>   [Date Prev] [Date Next] [Thread Prev] [Thread Next]

Header


Content

Posted by edward on May 09, 2014 - 09:42:
Author: bugman
Date: Fri May  9 09:42:44 2014
New Revision: 23118

URL: http://svn.gna.org/viewcvs/relax?rev=23118&view=rev
Log:
Small edits to the text of the B14 dispersion model section of the manual.


Modified:
    trunk/docs/latex/dispersion.tex

Modified: trunk/docs/latex/dispersion.tex
URL: 
http://svn.gna.org/viewcvs/relax/trunk/docs/latex/dispersion.tex?rev=23118&r1=23117&r2=23118&view=diff
==============================================================================
--- trunk/docs/latex/dispersion.tex     (original)
+++ trunk/docs/latex/dispersion.tex     Fri May  9 09:42:44 2014
@@ -576,7 +576,7 @@
 where Appendix 1 in \citet{Baldwin2014} list the recipe for exact 
calculation of $\Rtwoeff$.
 Note that the following definitions are different to those in the original 
publication, but match both the reference implementation and the relax 
implementation.
 The definitions are functionally equivalent.
-Establish the complex free precession eigenfrequency with
+First establish the complex free precession eigenfrequency with
 \begin{subequations}
 \begin{align}
        \Delta \Rtwozero & = \RtwozeroA - \RtwozeroB , \\
@@ -588,13 +588,12 @@
 \end{align}
 \end{subequations}
 
-The ground state ensemble evolution frequency $f_{00}$ expressed in 
separated real and imaginary components, in terms
-of definitions $\zeta , \Psi , h_3 , h_4$ is
+The ground state ensemble evolution frequency $f_{00}$ expressed in 
separated real and imaginary components, in terms of definitions $\zeta$, 
$\Psi$, and $h_4$ is
 \begin{equation}
        f_{00} = \frac{1}{2}\left(\RtwozeroA + \RtwozeroB + \kex\right) + 
\frac{\imath}{2}\left(\dw - h_4\right) .
 \end{equation}
 
-Define substitutions for `stay' and `swap' factors are
+Define substitutions for `stay' and `swap' factors as
 \begin{subequations}
 \begin{align}
        N & = h_3 + \imath h_4 , \\
@@ -606,7 +605,7 @@
 \end{align}
 \end{subequations}
 
-Weighting factors for frequencies ($E_{0-2}$) emerging from a single CPMG 
block, ($F_{0-2}$), are
+The weighting factors for frequencies $E_{0-2}$ emerging from a single CPMG 
block, $F_{0-2}$, are
 \begin{subequations}
 \begin{align}
        E_0 & =  2 \taucpmg \cdot h_3 , \\
@@ -615,8 +614,8 @@
 \end{align}
 \end{subequations}
 
-Here $\taucpmg = 1 / 4\nucpmg $.
-Final result, with identities to assist efficient matrix exponentiation 
optimised for numerical calculation is
+Here $\taucpmg = 1 / 4\nucpmg$.
+The final result, with identities to assist efficient matrix exponentiation 
optimised for numerical calculation is
 \begin{subequations}
 \begin{align}
        \nu_{1c} & = F_0  \cosh(E_0) - F_2 \cos(E_2) , \\




Related Messages


Powered by MHonArc, Updated Fri May 09 10:00:02 2014