mailr23901 - /branches/disp_spin_speed/target_functions/relax_disp.py


Others Months | Index by Date | Thread Index
>>   [Date Prev] [Date Next] [Thread Prev] [Thread Next]

Header


Content

Posted by tlinnet on June 13, 2014 - 07:21:
Author: tlinnet
Date: Fri Jun 13 07:21:02 2014
New Revision: 23901

URL: http://svn.gna.org/viewcvs/relax?rev=23901&view=rev
Log:
Replaced the loop structure in target function of TAP03 with numpy arrays.

This makes the model faster.

Task #7807 (https://gna.org/task/index.php?7807): Speed-up of dispersion 
models for Clustered analysis.

Modified:
    branches/disp_spin_speed/target_functions/relax_disp.py

Modified: branches/disp_spin_speed/target_functions/relax_disp.py
URL: 
http://svn.gna.org/viewcvs/relax/branches/disp_spin_speed/target_functions/relax_disp.py?rev=23901&r1=23900&r2=23901&view=diff
==============================================================================
--- branches/disp_spin_speed/target_functions/relax_disp.py     (original)
+++ branches/disp_spin_speed/target_functions/relax_disp.py     Fri Jun 13 
07:21:02 2014
@@ -395,7 +395,7 @@
             self.func = self.func_ns_mmq_3site_linear
 
         # Setup special numpy array structures, for higher dimensional 
computation.
-        if model in [MODEL_B14, MODEL_B14_FULL, MODEL_CR72, MODEL_CR72_FULL, 
MODEL_DPL94, MODEL_TSMFK01]:
+        if model in [MODEL_B14, MODEL_B14_FULL, MODEL_CR72, MODEL_CR72_FULL, 
MODEL_DPL94, MODEL_TAP03, MODEL_TSMFK01]:
             # Get the shape of back_calc structure.
             # If using just one field, or having the same number of 
dispersion points, the shape would extend to that number.
             # Shape has to be: [ei][si][mi][oi].
@@ -435,10 +435,12 @@
             self.power_a = ones(self.numpy_array_shape, int16)
 
             # For R1rho data.
-            if model in [MODEL_DPL94]:
+            if model in [MODEL_DPL94, MODEL_TAP03]:
                 self.tilt_angles_a = deepcopy(zeros_a)
                 self.spin_lock_omega1_squared_a = deepcopy(zeros_a)
+                self.spin_lock_omega1_a = deepcopy(zeros_a)
                 self.phi_ex_struct = deepcopy(zeros_a)
+                self.offset_a = deepcopy(zeros_a)
 
             self.frqs_a = deepcopy(zeros_a)
             self.disp_struct = deepcopy(zeros_a)
@@ -447,6 +449,7 @@
             # Create special numpy structures.
             # Structure of dw. The full and the outer dimensions structures.
             self.dw_struct = deepcopy(zeros_a)
+            self.no_nd_struct = ones([self.NO, self.ND], float64)
             self.nm_no_nd_struct = ones([self.NM, self.NO, self.ND], float64)
 
             # Structure of r20a and r20b. The full and outer dimensions 
structures.
@@ -459,10 +462,11 @@
                 # Expand relax times.
                 self.inv_relax_times_a = 1.0 / multiply.outer( 
tile(self.relax_times[:,None],(1, 1, self.NS)).reshape(self.NE, self.NS, 
self.NM), self.no_nd_struct )
 
-            if model in [MODEL_DPL94]:
+            if model in [MODEL_DPL94, MODEL_TAP03]:
                 self.r1_a = multiply.outer( self.r1.reshape(self.NE, 
self.NS, self.NM), self.no_nd_struct )
-
-            # Extract the frequencies to numpy array.
+                self.chemical_shifts_a = multiply.outer( 
self.chemical_shifts, self.no_nd_struct )
+
+           # Extract the frequencies to numpy array.
             self.frqs_a = multiply.outer( 
asarray(self.frqs).reshape(self.NE, self.NS, self.NM), self.no_nd_struct )
 
             # Loop over the experiment types.
@@ -476,7 +480,7 @@
                             # Extract number of dispersion points.
                             num_disp_points = 
self.num_disp_points[ei][si][mi][oi]
 
-                            if model not in [MODEL_DPL94]:
+                            if model not in [MODEL_DPL94, MODEL_TAP03]:
                                 # Extract cpmg_frqs and num_disp_points from 
lists.
                                 
self.cpmg_frqs_a[ei][si][mi][oi][:num_disp_points] = 
self.cpmg_frqs[ei][mi][oi]
                                 
self.num_disp_points_a[ei][si][mi][oi][:num_disp_points] = 
self.num_disp_points[ei][si][mi][oi]
@@ -498,12 +502,14 @@
                                     self.power_a[ei][si][mi][oi][di] = 
int(round(self.cpmg_frqs[ei][mi][0][di] * self.relax_times[ei][mi]))
                                     self.tau_cpmg_a[ei][si][mi][oi][di] = 
0.25 / self.cpmg_frqs[ei][mi][0][di]
                                 # For R1rho data.
-                                if model in [MODEL_DPL94]:
+                                if model in [MODEL_DPL94, MODEL_TAP03]:
                                     self.disp_struct[ei][si][mi][oi][di] = 
1.0
 
                                     # Extract the frequencies to numpy array.
                                     self.tilt_angles_a[ei][si][mi][oi][di] = 
self.tilt_angles[ei][si][mi][oi][di]
                                     
self.spin_lock_omega1_squared_a[ei][si][mi][oi][di] = 
self.spin_lock_omega1_squared[ei][mi][oi][di]
+                                    
self.spin_lock_omega1_a[ei][si][mi][oi][di] = 
self.spin_lock_omega1[ei][mi][oi][di]
+                                    self.offset_a[ei][si][mi][oi] = 
self.offset[ei][si][mi][oi]
 
                                     if spin_lock_nu1 != None and 
len(spin_lock_nu1[ei][mi][oi]):
                                         
self.num_disp_points_a[ei][si][mi][oi][di] = num_disp_points
@@ -1908,6 +1914,49 @@
         # Once off parameter conversions.
         pB = 1.0 - pA
 
+        # Convert dw from ppm to rad/s. Use the out argument, to pass 
directly to structure.
+        multiply( multiply.outer( dw.reshape(self.NE, self.NS), 
self.nm_no_nd_struct ), self.frqs_struct, out=self.dw_struct )
+
+        # Reshape R20 to per experiment, spin and frequency.
+        self.r20_struct[:] = multiply.outer( R20.reshape(self.NE, self.NS, 
self.NM), self.no_nd_struct )
+
+        # Back calculate the R1rho values.
+        r1rho_TAP03(r1rho_prime=self.r20_struct, 
omega=self.chemical_shifts_a, offset=self.offset_a, pA=pA, pB=pB, 
dw=self.dw_struct, kex=kex, R1=self.r1_a, 
spin_lock_fields=self.spin_lock_omega1_a, 
spin_lock_fields2=self.spin_lock_omega1_squared_a, 
back_calc=self.back_calc_a, num_points=self.num_disp_points_a)
+
+        # Clean the data for all values, which is left over at the end of 
arrays.
+        self.back_calc_a = self.back_calc_a*self.disp_struct
+
+        ## For all missing data points, set the back-calculated value to the 
measured values so that it has no effect on the chi-squared value.
+        if self.has_missing:
+            # Replace with values.
+            self.back_calc_a[self.mask_replace_blank.mask] = 
self.values_a[self.mask_replace_blank.mask]
+
+        # Return the total chi-squared value.
+        return chi2_rankN(self.values_a, self.back_calc_a, self.errors_a)
+
+
+    def func_TP02(self, params):
+        """Target function for the Trott and Palmer (2002) R1rho 
off-resonance 2-site model.
+
+        @param params:  The vector of parameter values.
+        @type params:   numpy rank-1 float array
+        @return:        The chi-squared value.
+        @rtype:         float
+        """
+
+        # Scaling.
+        if self.scaling_flag:
+            params = dot(params, self.scaling_matrix)
+
+        # Unpack the parameter values.
+        R20 = params[:self.end_index[0]]
+        dw = params[self.end_index[0]:self.end_index[1]]
+        pA = params[self.end_index[1]]
+        kex = params[self.end_index[1]+1]
+
+        # Once off parameter conversions.
+        pB = 1.0 - pA
+
         # Initialise.
         chi2_sum = 0.0
 
@@ -1924,7 +1973,7 @@
                 # Loop over the offsets.
                 for oi in range(self.num_offsets[0][si][mi]):
                     # Back calculate the R1rho values.
-                    r1rho_TAP03(r1rho_prime=R20[r20_index], 
omega=self.chemical_shifts[0][si][mi], offset=self.offset[0][si][mi][oi], 
pA=pA, pB=pB, dw=dw_frq, kex=kex, R1=self.r1[si, mi], 
spin_lock_fields=self.spin_lock_omega1[0][mi][oi], 
spin_lock_fields2=self.spin_lock_omega1_squared[0][mi][oi], 
back_calc=self.back_calc[0][si][mi][oi], 
num_points=self.num_disp_points[0][si][mi][oi])
+                    r1rho_TP02(r1rho_prime=R20[r20_index], 
omega=self.chemical_shifts[0][si][mi], offset=self.offset[0][si][mi][oi], 
pA=pA, pB=pB, dw=dw_frq, kex=kex, R1=self.r1[si, mi], 
spin_lock_fields=self.spin_lock_omega1[0][mi][oi], 
spin_lock_fields2=self.spin_lock_omega1_squared[0][mi][oi], 
back_calc=self.back_calc[0][si][mi][oi], 
num_points=self.num_disp_points[0][si][mi][oi])
 
                     # For all missing data points, set the back-calculated 
value to the measured values so that it has no effect on the chi-squared 
value.
                     for di in range(self.num_disp_points[0][si][mi][oi]):
@@ -1938,58 +1987,6 @@
         return chi2_sum
 
 
-    def func_TP02(self, params):
-        """Target function for the Trott and Palmer (2002) R1rho 
off-resonance 2-site model.
-
-        @param params:  The vector of parameter values.
-        @type params:   numpy rank-1 float array
-        @return:        The chi-squared value.
-        @rtype:         float
-        """
-
-        # Scaling.
-        if self.scaling_flag:
-            params = dot(params, self.scaling_matrix)
-
-        # Unpack the parameter values.
-        R20 = params[:self.end_index[0]]
-        dw = params[self.end_index[0]:self.end_index[1]]
-        pA = params[self.end_index[1]]
-        kex = params[self.end_index[1]+1]
-
-        # Once off parameter conversions.
-        pB = 1.0 - pA
-
-        # Initialise.
-        chi2_sum = 0.0
-
-        # Loop over the spins.
-        for si in range(self.num_spins):
-            # Loop over the spectrometer frequencies.
-            for mi in range(self.num_frq):
-                # The R20 index.
-                r20_index = mi + si*self.num_frq
-
-                # Convert dw from ppm to rad/s.
-                dw_frq = dw[si] * self.frqs[0][si][mi]
-
-                # Loop over the offsets.
-                for oi in range(self.num_offsets[0][si][mi]):
-                    # Back calculate the R1rho values.
-                    r1rho_TP02(r1rho_prime=R20[r20_index], 
omega=self.chemical_shifts[0][si][mi], offset=self.offset[0][si][mi][oi], 
pA=pA, pB=pB, dw=dw_frq, kex=kex, R1=self.r1[si, mi], 
spin_lock_fields=self.spin_lock_omega1[0][mi][oi], 
spin_lock_fields2=self.spin_lock_omega1_squared[0][mi][oi], 
back_calc=self.back_calc[0][si][mi][oi], 
num_points=self.num_disp_points[0][si][mi][oi])
-
-                    # For all missing data points, set the back-calculated 
value to the measured values so that it has no effect on the chi-squared 
value.
-                    for di in range(self.num_disp_points[0][si][mi][oi]):
-                        if self.missing[0][si][mi][oi][di]:
-                            self.back_calc[0][si][mi][oi][di] = 
self.values[0][si][mi][oi][di]
-
-                    # Calculate and return the chi-squared value.
-                    chi2_sum += chi2(self.values[0][si][mi][oi], 
self.back_calc[0][si][mi][oi], self.errors[0][si][mi][oi])
-
-        # Return the total chi-squared value.
-        return chi2_sum
-
-
     def func_TSMFK01(self, params):
         """Target function for the the Tollinger et al. (2001) 2-site 
very-slow exchange model, range of microsecond to second time scale.
 




Related Messages


Powered by MHonArc, Updated Fri Jun 13 07:40:02 2014