Author: tlinnet
Date: Sun Dec  7 13:53:16 2014
New Revision: 26994
URL: http://svn.gna.org/viewcvs/relax?rev=26994&view=rev
Log:
Documentation fix in the manual for the scaling values of parameters in the 
minimisation.
The scaling helps the minimisers to make the same step size for all 
parameters when moving in the chi2 space.
Modified:
    trunk/docs/latex/dispersion.tex
Modified: trunk/docs/latex/dispersion.tex
URL: 
http://svn.gna.org/viewcvs/relax/trunk/docs/latex/dispersion.tex?rev=26994&r1=26993&r2=26994&view=diff
==============================================================================
--- trunk/docs/latex/dispersion.tex     (original)
+++ trunk/docs/latex/dispersion.tex     Sun Dec  7 13:53:16 2014
@@ -2206,7 +2206,7 @@
 
 The concept of diagonal scaling is explained in Section~\ref{sect: diagonal 
scaling} on page~\pageref{sect: diagonal scaling}.
 
-For the dispersion analysis the scaling factor of 10 is used for the 
relaxation rates, 1e$^5$ for the exchange rates, 1e$^{-4}$ for exchange 
times, and 1 for all other parameters.
+For the dispersion analysis the scaling factor of 10 is used for the 
relaxation rates, 1e$^4$ for the exchange rates, 1e$^{-4}$ for exchange 
times, and 1 for all other parameters.
 The scaling matrix for the parameters \{$\Rtwozero$, $\RtwozeroA$, 
$\RtwozeroB$, $\Phiex$, $\PhiexB$, $\PhiexC$, $\pA\dw^2$, $\dw$, $\dwH$, 
$\pA$, $\pB$, $\kex$, $\kB$, $\kC$, $\kAB$, $\tex$\} is
 \begin{equation}
     \begin{pmatrix}
@@ -2221,10 +2221,10 @@
         0  & 0  & 0  & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0    & 0    & 0    & 
0    & 0       \\
         0  & 0  & 0  & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0    & 0    & 0    & 
0    & 0       \\
         0  & 0  & 0  & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0    & 0    & 0    & 
0    & 0       \\
-        0  & 0  & 0  & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1e^5 & 0    & 0    & 
0    & 0       \\
-        0  & 0  & 0  & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0    & 1e^5 & 0    & 
0    & 0       \\
-        0  & 0  & 0  & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0    & 0    & 1e^5 & 
0    & 0       \\
-        0  & 0  & 0  & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0    & 0    & 0    & 
1e^5 & 0       \\
+        0  & 0  & 0  & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1e^4 & 0    & 0    & 
0    & 0       \\
+        0  & 0  & 0  & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0    & 1e^4 & 0    & 
0    & 0       \\
+        0  & 0  & 0  & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0    & 0    & 1e^4 & 
0    & 0       \\
+        0  & 0  & 0  & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0    & 0    & 0    & 
20   & 0       \\
         0  & 0  & 0  & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0    & 0    & 0    & 
0    & 1e^{-4} \\
     \end{pmatrix}.
 \end{equation}