|
Dear Edward, please see below. On 2/21/2011 12:38 PM, Edward d'Auvergne wrote: Dear Peter, Please see below: On 21 February 2011 09:51, Dr. Klaus-Peter Neidig <peter.neidig@xxxxxxxxxxxxxxxxx> wrote:Dear Edward, I'm running a current of output files today and send them. The error of a ratio of numbers y = a/b with given aErr, bErr is yErr = sqrt [ (aErr/a)^2 + (bErr/b)^2], which for a=1 and aErr=0 is yErr = bErr/b Does this correspond to yout notation ?This is not quite right, for example see the NOE error formula on page 5988 of the Farrow et al, Biochem. (1994), 33, 5984-6003 reference. The formula should be: yErr/y = sqrt [ (aErr/a)^2 + (bErr/b)^2]. For a=1 and aErr=0, the formula will then be: yErr/y = bErr/b. In the case of the R1: sigma_R1 / R1 = sigma_T1 / T1, or: sigma_R1 = sigma_T1 / T1^2, sigma_R1 = sigma_T1 * R1^2. There is a chance that this formula from the Kay paper is incorrect. I've been trying to find another reference, one that I found a long time ago, but I can't find it any more. Do you have a reference for the yErr = sqrt [ (aErr/a)^2 + (bErr/b)^2] formula? This does not explain the differences though, they are even more pronounced using yErr = sqrt [ (aErr/a)^2 + (bErr/b)^2]. sorry, I forgot to multiply with the y value, so yErr = y * (bErr/b)as you write. Perhaps the label "used integral errors" is a misleading. We could just leave out the word "used".The fit error determination in the PDC depends on the method the user has chosen. Under the tag Fit parameter Error estimation method: the options are - from fit using arbitray y uncertainties - from fit using calculated y uncertainties - from Monte Carlo simulationsWhich of these does the "SECTION: used integral errors" belong to? This section appears to be errors associated with each peak intensity from "SECTION: used integrals". I simply took these to be individual peak errors and then performed standard Monte Carlo simulations on these. Each peak appears to have a different error, but does "Fit parameter Error estimation method: from fit using arbitray y uncertainties" means one error for all peaks? If these errors are used or not during the fit depends on the chosen fit error calculation. The way you used the error would be "- from fit using calculated y uncertainties" but the sample output files I had sent so far used the option "-from fit using arbitray y uncertainties". In the mean I made a comparison and the differences in these methods is about those you see. I have a bug somewhere else in the code which I must fix first, then I will send new output files that all used "- from fit using calculated y uncertainties". The first option (~ one error for all peaks) is normally not recommended but described in most books and there may be cases to use, e.g. if there is no reasonable y error calculation from the data. The first 2 are offered by the our standard Marquardt implementation.The Levenberg-Marquardt optimisation and Monte Carlo simulations are two unrelated techniques, one is for optimisation, the other for error propagation. A very low quality error estimation method comes from the covariance matrix. So one can use Levenberg-Marquardt (or any other optimisation algorithm) and then determine the errors using the covariance matrix defined at the solution. I don't understand the differences in the error estimation methods in the PDC :SThe first option assumes the same error for all y values. This then cancales out of the formula, therefore we call it arbitrary.But this could be used for either the Monte Carlo simulations or the covariance matrix error estimation methods. In relax, this is used in combination with MC simulations. We had the discussion before and as a result I implemented the average variance method as youThe second option uses the y errors as determined before. As we discussed earlier the base plane RMS is one source for these errors the other is from optional repetition experiments. If repetition experiments are available the systematic error can be calculated as: - worst case per peak scenario - average variance calculationAs I showed using theoretical examples in https://mail.gna.org/public/relax-devel/2010-11/msg00027.html (data, python and _javascript_s are attached to https://gna.org/task/?7180), the 2 worst case per peak methods on average significantly overestimate the errors, and have huge variances meaning that the real errors compared to the estimates are multiplied by a normal distribution of 1.594+/-0.852. So 95% of the estimates from duplicated spectra (assuming a normal distribution) will be scaled by a factor between -0.11 and 3.298! This type of error estimate would be fatal for subsequent model-free analysis. Therefore in relax we will need to catch "Systematic error estimation of data: worst case per peak scenario" and re-perform the relaxation curve-fitting and Monte Carlo simulations. Or maybe throw an in relax error and tell the user that they must go back to the PDC and use "average variance calculation" with "Monte Carlo simlautions". In the example file you sent (http://svn.gna.org/viewcvs/relax/1.3/test_suite/shared_data/pdc_files/testT1.txt?revision=12551&view=markup), it says "Fit parameter Error estimation method: from fit using arbitray y uncertainties". Above you said that this corresponds to 1 error for all peaks. But you described in https://mail.gna.org/public/relax-devel/2010-11/msg00021.html that the current "worst case per peak scenario" method in the PDC uses a different estimate for each peak. The file also says "Random error estimation of data: RMS per spectrum (or trace/plane)". So I am quite confused as to how to interpret the data. Where do I read the peak intensity errors from? suggested. We can The default value is however set to the first option since in older PDC versions this was the only option and I did not want that users suddenty get different results if they overlook this detail. However, in the documentation we can more explicitly describe this and recommend the average variance option. Marquardt internally uses a covariance matrix technique. I do not fully understand the problem. One thingThe test output files I have sent so far calculated the fit parameter errors via from fit using arbitray y uncertainties. This option was chosen accidentally. The error there is different from the other 2 methods. Perhaps it is a better idea to generate a new set of output files using the option "from fit using calculated y uncertainties". That usually compares well with MC simulations.What is the "from fit using calculated y uncertainties"? Is this the covariance matrix technique for error estimation? For simple single exponentials, the covariance matrix technique and Monte Carlo simulations should not be too different, I hope. How does this combine with "worst case per peak scenario" and "average variance calculation"? is to get y values and errors of y values. The y values are used to fit a function. When doing this the determined y errors can be used or not. No, we do not take back-calculated y values and randomise these. We take the original yIn the PDC I do 1000 MC simulations such that a vary the y values based on a gaussian random distribution, the mean is the original y, the width is the error of y.You mean you take the back-calculated y value and randomise this 1000 times with a Gaussian distribution centred at the back-calculated y with an error set to the peak intensity error? If you take the original y, this is not Monte Carlo simulations but Bootstrapping - a technique which should never be used for error estimation. Well, you can use bootstrapping for a direct calculation of values, but never for optimised values. values, randomise them and use them as input for the fit. I I'm now confused by myself about what you write but you are certainly more experienced in these fields. In Summary the PDC does:I am quite confused. The way I see the analysis, using the notations from the statistics and optimisation fields, there are the following categories: Peak intensity notation: - Height (the physical height of the Lorentizian peak at its mean, or maximum point) - Volume (sum of all points, i.e. the discrete integration of the Lorentizian) - Height (as above but via fitting peak shape to a function) - Volume (as above but via fitting peak shape to a function) Peak errors: - 1 average error for all peaks (from some spectra duplicated, triplicated, etc.) - 1 max error for all peaks (largest ever occurring difference) - 1 average error for all peaks in one spectrum (only if all spectra are duplicated) - 1 max error for each peak across all spectra (current "worst case per peak scenario"?). - Each peak has a different error (from the baseplane RMSD) Optimisation methods: - Levenberg-Marquardt - Simplex - Newton - etc. Error estimation methods: - Covariance matrix (bad) - Jackknife (also bad) - Bootstrapping (never to be used with optimisation) - Monte Carlo simulations (considered the gold standard) - etc. I am having trouble classifying the PDC file http://svn.gna.org/viewcvs/relax/1.3/test_suite/shared_data/pdc_files/testT1.txt?revision=12551&view=markup into these categories. This is very, very confusing :S Regards, Edward . 1. Determine all y (4 options available) 2. Determine all y errors. RMS calculation can always be done. If repetition experiments are available they are used and errors are calculated from those (2 options available) and added. The errors coming from the RMS calculation and the ones coming from the repetitions were assumed to be independent. The latter is usually much larger. The output contains only the total error not the individual contributions. If no repetition experiments are available the error came from RMS only. 3. The y values are used for fitting. The y errors can be used by Marquardt which internally does a covariance type analysis but they may also be replaced by a "unique" error used for all peaks. As a third option the Marquardt can be run N times with randomised y values and using the "unique" error for all peaks. I would suggest the following: Below is a testT1_rel.txt made this morning. It used the errors of y as given in the section "used integral errors". Perhaps you can re-run your script and check the ratio of your and our errors. If the differences in the errors remain I have to talk to some people here because I cannot just change major things in the code. I have to report to a responsible person and he finally tells me what I should do. There are some people here with "simulation experience". What really surprises me at the moment is that several people used the PDC (and its newer sections) and compared fits and errors to other programs and did not report problems to me. Best regards, Peter --
| |||||||||
$##1.0
Project: Dynamic method/T1
Date: Monday, February 21, 2011 11:34:57 AM
User: neidig
Computer: moertel2
generated by: ProteinCenter 1.1.5 (2011 Feb/21)
SECTION: sample information
sample name: ubiquitine
Description/Title: standard demo sample
Origin: in-house
Date of preparation: 06 / 2005
Solvent: 90% H2O + 10% D2O
pH: 7.0
Sample tube: normal
Tube diameter (mm): 3
Concentration (mM): 10.00
Temperature (K): 308.0
Weight (Daltons): 8900
Correlation time (ns): 12.40
Labelling: 15N
AminoAcid storage: FASTA file
AminoAcid file: E:\data\dynamic\nmr\sample_ber\ubi_fasta_.txt
0 M Q I F V K T L T G
10 K T I T L E V E P S
20 D T I E N V K A K T
30 Q D K E G I P P D Q
40 Q R L I F A G K Q L
50 E D G R T L S D Y N
60 I Q K E S T L H L V
70 L R L R G G
PDB file: E:\data\dynamic\nmr\sample_ber\1UBQ_H.pdb
SECTION: relevant parameters
Proton frequency[MHz]: 600.130
X nucleus frequency[MHz]: 60.811
SECTION: used integrals
Mixing time [s]: 0.01000000 0.05000000
0.10000000 0.10000000 0.20000000
0.30000000 0.40000000 0.50000000
0.50000000 0.70000000 1.00000000
1.50000000
Peak name I0 I1
I2 I3 I4 I5
I6 I7 I8
I9 I10 I11
Gln [2] 188221907.00000000 170715850.00000000
155029756.00000000 153590916.00000000 122823911.00000000
99589044.00000000 80386192.00000000 64045596.00000000
63158976.00000000 41739761.00000000 21211820.00000000
7618632.00000000
Ile [3] 181874689.00000000 165473246.00000000
147666938.00000000 148524160.00000000 116288129.00000000
92254697.00000000 73753362.00000000 57608294.00000000
58646397.00000000 35733527.00000000 18548893.00000000
6005615.00000000
Phe [4] 147736300.00000000 133647904.00000000
117589408.00000000 119154699.00000000 93381858.00000000
74435015.00000000 58156869.00000000 46568010.00000000
47185417.00000000 29618171.00000000 14448174.00000000
4475585.00000000
Val [5] 172103680.00000000 157977126.00000000
138726372.00000000 139593108.00000000 110181985.00000000
90727929.00000000 71825742.00000000 57015817.00000000
56609499.00000000 36754012.00000000 18636098.00000000
5915940.00000000
Lys [6] 184837364.00000000 169841476.00000000
149555131.00000000 149561168.00000000 118207658.00000000
96525000.00000000 75218229.00000000 60520977.00000000
60785249.00000000 39232235.00000000 19053059.00000000
5911738.00000000
Thr [7] 192406245.00000000 178220844.00000000
161282534.00000000 159685797.00000000 128408433.00000000
102309141.00000000 82353495.00000000 64542680.00000000
64903073.00000000 41463111.00000000 21578782.00000000
6967174.00000000
Leu [8] 130796113.00000000 119302010.00000000
106222149.00000000 106097448.00000000 83896652.00000000
70313374.00000000 53594025.00000000 43359729.00000000
41922537.00000000 28564305.00000000 15169905.00000000
5118688.00000000
Thr [9] 80828873.00000000 73551278.00000000
65538757.00000000 66204377.00000000 53767038.00000000
47027898.00000000 36774364.00000000 30312041.00000000
30297906.00000000 20279013.00000000 11447427.00000000
4398465.00000000
Gly [10] 196444267.00000000 181408096.00000000
163517301.00000000 163740568.00000000 128910461.00000000
110597233.00000000 87159892.00000000 70063736.00000000
70482549.00000000 46864957.00000000 24391496.00000000
9338526.00000000
Lys [11] 204925786.00000000 188156171.00000000
170725817.00000000 171664068.00000000 138396013.00000000
118623502.00000000 93100167.00000000 75589849.00000000
76549623.00000000 51775645.00000000 28245193.00000000
10511265.00000000
Thr [12] 155972063.00000000 145124644.00000000
130533396.00000000 127649681.00000000 101133311.00000000
86240669.00000000 66791444.00000000 53655693.00000000
53809611.00000000 35330827.00000000 19018799.00000000
6964352.00000000
Ile [13] 149073156.00000000 137648890.00000000
121932973.00000000 123353789.00000000 96407727.00000000
76851948.00000000 61598849.00000000 48577923.00000000
49077995.00000000 31877412.00000000 16991567.00000000
5467033.00000000
Thr [14] 203826075.00000000 186670441.00000000
168914930.00000000 167411869.00000000 133044702.00000000
109541506.00000000 85994201.00000000 68565235.00000000
69031018.00000000 45706119.00000000 23389399.00000000
7601632.00000000
Leu [15] 158283516.00000000 143893232.00000000
129676769.00000000 126021573.00000000 100668023.00000000
80726932.00000000 65125997.00000000 51373700.00000000
52088949.00000000 33239768.00000000 16461249.00000000
6296729.00000000
Glu [16] 225963215.00000000 212325157.00000000
184562498.00000000 190140009.00000000 151892701.00000000
126339896.00000000 99325730.00000000 81217506.00000000
81240784.00000000 54639685.00000000 29386089.00000000
10259760.00000000
Val [17] 195330282.00000000 178537519.00000000
158540567.00000000 160266729.00000000 126175260.00000000
101759540.00000000 79347988.00000000 63317661.00000000
64053890.00000000 40731679.00000000 20747332.00000000
6415007.00000000
Glu [18] 170100664.00000000 158220566.00000000
142372202.00000000 139627085.00000000 112860869.00000000
92924818.00000000 74749975.00000000 60510520.00000000
61354983.00000000 40540113.00000000 20870964.00000000
7150110.00000000
Ser [20] 206667085.00000000 188202370.00000000
166114180.00000000 167053174.00000000 133269379.00000000
108489522.00000000 84123329.00000000 68266768.00000000
68204704.00000000 45122277.00000000 22960355.00000000
7920875.00000000
Asp [21] 252093784.00000000 225735737.00000000
202161335.00000000 202677240.00000000 161698292.00000000
126351595.00000000 101096108.00000000 79184293.00000000
79308447.00000000 48641599.00000000 24186094.00000000
7537456.00000000
Thr [22] 158822828.00000000 145220679.00000000
127802315.00000000 129052997.00000000 101234270.00000000
82890557.00000000 64809612.00000000 51810263.00000000
52344521.00000000 33530186.00000000 16842055.00000000
4971973.00000000
Ile [23] 139165254.00000000 127183675.00000000
110164756.00000000 112050649.00000000 84417439.00000000
70125039.00000000 53337849.00000000 41514679.00000000
40799801.00000000 25947688.00000000 12321715.00000000
3665780.00000000
Asn [25] 169208205.00000000 152364736.00000000
135523059.00000000 136722043.00000000 106644958.00000000
85414773.00000000 65883737.00000000 51375755.00000000
52188109.00000000 32845424.00000000 15842467.00000000
4256425.00000000
Val [26] 235646394.00000000 218394909.00000000
188839431.00000000 194279364.00000000 151892701.00000000
126773388.00000000 102004963.00000000 83226525.00000000
81710722.00000000 55222728.00000000 30058947.00000000
10939380.00000000
Lys [27] 146466511.00000000 134446433.00000000
117952859.00000000 119287488.00000000 93539795.00000000
75379248.00000000 58082109.00000000 45800415.00000000
45733428.00000000 29030393.00000000 14369955.00000000
3967653.00000000
Ala [28] 183087389.00000000 166098382.00000000
148631233.00000000 146815888.00000000 115468550.00000000
90010364.00000000 71937600.00000000 57235980.00000000
57096426.00000000 36050387.00000000 17905899.00000000
5287941.00000000
Lys [29] 157871398.00000000 142549971.00000000
125931036.00000000 127087384.00000000 99749407.00000000
80317945.00000000 63334994.00000000 49933573.00000000
49808151.00000000 32140080.00000000 16130921.00000000
5424571.00000000
Thr [30] 184470441.00000000 168290646.00000000
146650015.00000000 150163517.00000000 113697010.00000000
90447602.00000000 71094552.00000000 57373548.00000000
55671590.00000000 36597966.00000000 18224066.00000000
4885754.00000000
Gln [31] 204881745.00000000 184287001.00000000
163186285.00000000 166581360.00000000 130000538.00000000
103291161.00000000 80123021.00000000 63010012.00000000
64053853.00000000 40240137.00000000 19779908.00000000
6412819.00000000
Asp [32] 206035470.00000000 187130556.00000000
169073538.00000000 167487239.00000000 128878170.00000000
104982870.00000000 81980949.00000000 65137953.00000000
64910564.00000000 42783169.00000000 21115101.00000000
6175989.00000000
Lys [33] 212740148.00000000 194462516.00000000
175656082.00000000 173752539.00000000 139949402.00000000
112434991.00000000 91024053.00000000 72902312.00000000
72526609.00000000 46299505.00000000 24241760.00000000
7887105.00000000
Glu [34] 202083258.00000000 186077531.00000000
165899251.00000000 165095264.00000000 133557975.00000000
105670841.00000000 84452949.00000000 67781756.00000000
67018349.00000000 43605515.00000000 22094114.00000000
7249634.00000000
Gly [35] 241506461.00000000 222006098.00000000
197131421.00000000 196490618.00000000 156830176.00000000
125434750.00000000 100439539.00000000 79676985.00000000
80747732.00000000 52457372.00000000 26540226.00000000
8731184.00000000
Ile [36] 234058810.00000000 218005077.00000000
195564053.00000000 195696906.00000000 158786247.00000000
133281122.00000000 105431963.00000000 87420968.00000000
88893101.00000000 60448520.00000000 33550118.00000000
13039064.00000000
Asp [39] 231493725.00000000 209189654.00000000
185905154.00000000 186077342.00000000 146789328.00000000
118799297.00000000 94957274.00000000 75061455.00000000
74535024.00000000 47398333.00000000 23745296.00000000
7231902.00000000
Gln [40] 193819563.00000000 177932952.00000000
158302631.00000000 159486024.00000000 126855965.00000000
101705817.00000000 81086278.00000000 63678183.00000000
64471977.00000000 40884502.00000000 20531223.00000000
6390964.00000000
Gln [41] 155167988.00000000 142473700.00000000
126524839.00000000 127556879.00000000 101252993.00000000
81581562.00000000 65281387.00000000 52497166.00000000
52595045.00000000 33464811.00000000 16670631.00000000
5325981.00000000
Arg [42] 132318085.00000000 123493555.00000000
106143297.00000000 111806654.00000000 85129506.00000000
70470044.00000000 54134938.00000000 43503199.00000000
43946518.00000000 27513557.00000000 14001214.00000000
4693041.00000000
Leu [43] 117743446.00000000 107602632.00000000
96274144.00000000 97964494.00000000 78572832.00000000
63301420.00000000 51260876.00000000 41269809.00000000
39238878.00000000 26045828.00000000 13277650.00000000
4357848.00000000
Ile [44] 139710089.00000000 130095625.00000000
115486414.00000000 114394665.00000000 90148056.00000000
73745378.00000000 57454185.00000000 46234985.00000000
45862730.00000000 29520061.00000000 14532453.00000000
4677290.00000000
Phe [45] 132867198.00000000 120805825.00000000
108270684.00000000 107100014.00000000 85889973.00000000
69091124.00000000 55020744.00000000 43236350.00000000
44260399.00000000 27503468.00000000 13441035.00000000
4826130.00000000
Ala [46] 57914597.00000000 51881309.00000000
46579229.00000000 47092814.00000000 37037144.00000000
31924167.00000000 23903155.00000000 19563653.00000000
19746012.00000000 12878110.00000000 6609089.00000000
2699082.00000000
Gly [47] 188826864.00000000 172677977.00000000
151981140.00000000 152700081.00000000 123676846.00000000
102049320.00000000 79022474.00000000 63133692.00000000
64204513.00000000 41947915.00000000 21645746.00000000
7029647.00000000
Lys [48] 178431003.00000000 165617287.00000000
146584627.00000000 150749529.00000000 117496476.00000000
98262260.00000000 74737811.00000000 60170695.00000000
61619711.00000000 39233738.00000000 20328841.00000000
6156701.00000000
Gln [49] 186021781.00000000 175056129.00000000
157099110.00000000 156008670.00000000 125463985.00000000
102293402.00000000 81579021.00000000 66980952.00000000
66344623.00000000 44594468.00000000 23191461.00000000
7761648.00000000
Leu [50] 143844863.00000000 132127991.00000000
117546981.00000000 119479003.00000000 94670839.00000000
76256888.00000000 59560726.00000000 48402696.00000000
48185607.00000000 30318410.00000000 15068508.00000000
4839653.00000000
Glu [51] 145894664.00000000 134099654.00000000
120946012.00000000 121216828.00000000 97978112.00000000
78347944.00000000 63562757.00000000 51163711.00000000
52797973.00000000 33220440.00000000 16651981.00000000
6038678.00000000
Asp [52] 195905463.00000000 180334422.00000000
164853593.00000000 163313105.00000000 131390726.00000000
109689711.00000000 87684801.00000000 70466565.00000000
72501426.00000000 48470051.00000000 26133017.00000000
9850633.00000000
Arg [54] 158337145.00000000 145064669.00000000
129967983.00000000 130449620.00000000 102043048.00000000
83981092.00000000 67008960.00000000 53914300.00000000
53985173.00000000 35544289.00000000 18773027.00000000
6598057.00000000
Thr [55] 125689709.00000000 114960229.00000000
103498437.00000000 103430099.00000000 80896155.00000000
64811193.00000000 51404358.00000000 40829824.00000000
41911615.00000000 26866122.00000000 13687023.00000000
4107187.00000000
Leu [56] 168255466.00000000 154967127.00000000
136634823.00000000 135990949.00000000 106681521.00000000
85486309.00000000 67363079.00000000 52627948.00000000
52676455.00000000 33329474.00000000 16011504.00000000
5151936.00000000
Ser [57] 222266360.00000000 203639252.00000000
182176188.00000000 181782509.00000000 144761477.00000000
116207703.00000000 90526285.00000000 72206981.00000000
71441266.00000000 45297358.00000000 22859099.00000000
7411511.00000000
Asp [58] 186091017.00000000 168301874.00000000
150697528.00000000 151946572.00000000 118337303.00000000
93943924.00000000 73474227.00000000 57766643.00000000
58410938.00000000 35629320.00000000 17647619.00000000
5556101.00000000
Tyr [59] 182353535.00000000 166629228.00000000
150558070.00000000 150011046.00000000 121323530.00000000
95925749.00000000 77125206.00000000 60634749.00000000
61111522.00000000 38930013.00000000 20178398.00000000
6734658.00000000
Asn [60] 232274110.00000000 210967445.00000000
190126440.00000000 189307384.00000000 151891486.00000000
119903539.00000000 94693227.00000000 75699056.00000000
75756423.00000000 47698283.00000000 23928648.00000000
8405669.00000000
Ile [61] 163369731.00000000 147733354.00000000
132578855.00000000 131810056.00000000 102691464.00000000
82992313.00000000 64360664.00000000 51288385.00000000
52392778.00000000 33234661.00000000 16457737.00000000
5243736.00000000
Gln [62] 195292818.00000000 180098314.00000000
165607120.00000000 164228419.00000000 135334020.00000000
110794150.00000000 89402934.00000000 74016447.00000000
74633530.00000000 50249122.00000000 27828964.00000000
10877159.00000000
Lys [63] 281179848.00000000 258350481.00000000
230185994.00000000 231846663.00000000 184575436.00000000
151618598.00000000 120743661.00000000 96049008.00000000
97593757.00000000 64174356.00000000 32745570.00000000
11027506.00000000
Glu [64] 151318119.00000000 138657658.00000000
123776848.00000000 122882896.00000000 97330060.00000000
77001620.00000000 60956752.00000000 48516943.00000000
49073731.00000000 30993799.00000000 15397797.00000000
5153073.00000000
Ser [65] 184598153.00000000 168471042.00000000
151200708.00000000 151588090.00000000 121730596.00000000
99328520.00000000 78782220.00000000 62742003.00000000
62983030.00000000 39920482.00000000 20786435.00000000
7055237.00000000
Thr [66] 182654649.00000000 165327131.00000000
147419506.00000000 147923225.00000000 117711125.00000000
96520239.00000000 76769191.00000000 62873606.00000000
62786605.00000000 40242044.00000000 21059009.00000000
7329810.00000000
Leu [67] 143684306.00000000 131497707.00000000
115388575.00000000 114537365.00000000 90695052.00000000
74300811.00000000 59131607.00000000 45743324.00000000
47463749.00000000 31209095.00000000 16007523.00000000
5240329.00000000
His [68] 140517325.00000000 128617689.00000000
114525583.00000000 114547343.00000000 91085108.00000000
73627345.00000000 58108417.00000000 46488924.00000000
46747152.00000000 30349782.00000000 15259372.00000000
4969182.00000000
Leu [69] 180495711.00000000 164962789.00000000
149583780.00000000 147708405.00000000 118473209.00000000
94724063.00000000 75166040.00000000 59510986.00000000
61175770.00000000 37846415.00000000 18656762.00000000
6386896.00000000
Val [70] 143843305.00000000 131509536.00000000
117016675.00000000 118095171.00000000 91953416.00000000
73928447.00000000 58677098.00000000 46199502.00000000
46016621.00000000 29717313.00000000 14212759.00000000
4903616.00000000
Leu [71] 191455127.00000000 176651362.00000000
158015972.00000000 157904736.00000000 128801815.00000000
102927475.00000000 82348955.00000000 64723785.00000000
65167510.00000000 44107575.00000000 21833425.00000000
7546767.00000000
Arg [72] 220333907.00000000 204367568.00000000
181950724.00000000 183639051.00000000 145962293.00000000
119764773.00000000 94903357.00000000 76685950.00000000
76686350.00000000 49351551.00000000 25919565.00000000
8855974.00000000
Leu [73] 241226873.00000000 225493937.00000000
202361540.00000000 204490091.00000000 169504467.00000000
145551444.00000000 117185563.00000000 95819760.00000000
96013079.00000000 65569272.00000000 39020218.00000000
16620089.00000000
Arg [74] 191883204.00000000 176872888.00000000
161473483.00000000 163244378.00000000 134860239.00000000
123123988.00000000 99579916.00000000 84545481.00000000
84896390.00000000 62306995.00000000 39809111.00000000
18680798.00000000
Gly [75] 126157098.00000000 117318927.00000000
107762024.00000000 108701708.00000000 94295201.00000000
91933672.00000000 77029905.00000000 67062951.00000000
68482726.00000000 55565058.00000000 39230387.00000000
23453548.00000000
Gly [76] 404472039.00000000 392822505.00000000
379864243.00000000 379113005.00000000 351789088.00000000
330797588.00000000 303200697.00000000 278284758.00000000
278155671.00000000 237265365.00000000 190531294.00000000
131036521.00000000
SECTION: used integral errors
Mixing time [s]: 0.01000000 0.05000000
0.10000000 0.10000000 0.20000000
0.30000000 0.40000000 0.50000000
0.50000000 0.70000000 1.00000000
1.50000000
Peak name I0 I1
I2 I3 I4 I5
I6 I7 I8
I9 I10 I11
Gln [2] 1608301.59447534 1607613.84326396
1608249.33096598 1588840.25616723 1608744.91632413
1624141.35059149 1599708.05488950 1616400.26664149
1614299.97588381 1623059.36429784 1610369.76463726
1619654.26944291
Ile [3] 1207564.59447534 1206876.84326396
1207512.33096598 1188103.25616723 1208007.91632413
1223404.35059149 1198971.05488950 1215663.26664149
1213562.97588381 1222322.36429784 1209632.76463726
1218917.26944291
Phe [4] 1734752.59447534 1734064.84326396
1734700.33096598 1715291.25616723 1735195.91632413
1750592.35059149 1726159.05488950 1742851.26664149
1740750.97588381 1749510.36429784 1736820.76463726
1746105.26944291
Val [5] 1036197.59447534 1035509.84326396
1036145.33096598 1016736.25616723 1036640.91632413
1052037.35059149 1027604.05488950 1044296.26664149
1042195.97588381 1050955.36429784 1038265.76463726
1047550.26944291
Lys [6] 433733.59447534 433045.84326396
433681.33096598 414272.25616723 434176.91632413
449573.35059149 425140.05488950 441832.26664149
439731.97588381 448491.36429784 435801.76463726
445086.26944291
Thr [7] 1766198.59447534 1765510.84326396
1766146.33096598 1746737.25616723 1766641.91632413
1782038.35059149 1757605.05488950 1774297.26664149
1772196.97588381 1780956.36429784 1768266.76463726
1777551.26944291
Leu [8] 1606653.59447534 1605965.84326396
1606601.33096598 1587192.25616723 1607096.91632413
1622493.35059149 1598060.05488950 1614752.26664149
1612651.97588381 1621411.36429784 1608721.76463726
1618006.26944291
Thr [9] 835081.59447534 834393.84326396
835029.33096598 815620.25616723 835524.91632413
850921.35059149 826488.05488950 843180.26664149
841079.97588381 849839.36429784 837149.76463726
846434.26944291
Gly [10] 588274.59447534 587586.84326396
588222.33096598 568813.25616723 588717.91632413
604114.35059149 579681.05488950 596373.26664149
594272.97588381 603032.36429784 590342.76463726
599627.26944291
Lys [11] 1129235.59447534 1128547.84326396
1129183.33096598 1109774.25616723 1129678.91632413
1145075.35059149 1120642.05488950 1137334.26664149
1135233.97588381 1143993.36429784 1131303.76463726
1140588.26944291
Thr [12] 3053176.59447534 3052488.84326396
3053124.33096598 3033715.25616723 3053619.91632413
3069016.35059149 3044583.05488950 3061275.26664149
3059174.97588381 3067934.36429784 3055244.76463726
3064529.26944291
Ile [13] 1590277.59447534 1589589.84326396
1590225.33096598 1570816.25616723 1590720.91632413
1606117.35059149 1581684.05488950 1598376.26664149
1596275.97588381 1605035.36429784 1592345.76463726
1601630.26944291
Thr [14] 1672522.59447534 1671834.84326396
1672470.33096598 1653061.25616723 1672965.91632413
1688362.35059149 1663929.05488950 1680621.26664149
1678520.97588381 1687280.36429784 1674590.76463726
1683875.26944291
Leu [15] 3824657.59447534 3823969.84326396
3824605.33096598 3805196.25616723 3825100.91632413
3840497.35059149 3816064.05488950 3832756.26664149
3830655.97588381 3839415.36429784 3826725.76463726
3836010.26944291
Glu [16] 5746972.59447534 5746284.84326396
5746920.33096598 5727511.25616723 5747415.91632413
5762812.35059149 5738379.05488950 5755071.26664149
5752970.97588381 5761730.36429784 5749040.76463726
5758325.26944291
Val [17] 1895623.59447534 1894935.84326396
1895571.33096598 1876162.25616723 1896066.91632413
1911463.35059149 1887030.05488950 1903722.26664149
1901621.97588381 1910381.36429784 1897691.76463726
1906976.26944291
Glu [18] 2914578.59447534 2913890.84326396
2914526.33096598 2895117.25616723 2915021.91632413
2930418.35059149 2905985.05488950 2922677.26664149
2920576.97588381 2929336.36429784 2916646.76463726
2925931.26944291
Ser [20] 1108455.59447534 1107767.84326396
1108403.33096598 1088994.25616723 1108898.91632413
1124295.35059149 1099862.05488950 1116554.26664149
1114453.97588381 1123213.36429784 1110523.76463726
1119808.26944291
Asp [21] 685366.59447534 684678.84326396
685314.33096598 665905.25616723 685809.91632413
701206.35059149 676773.05488950 693465.26664149
691364.97588381 700124.36429784 687434.76463726
696719.26944291
Thr [22] 1420143.59447534 1419455.84326396
1420091.33096598 1400682.25616723 1420586.91632413
1435983.35059149 1411550.05488950 1428242.26664149
1426141.97588381 1434901.36429784 1422211.76463726
1431496.26944291
Ile [23] 2055354.59447534 2054666.84326396
2055302.33096598 2035893.25616723 2055797.91632413
2071194.35059149 2046761.05488950 2063453.26664149
2061352.97588381 2070112.36429784 2057422.76463726
2066707.26944291
Asn [25] 1368445.59447534 1367757.84326396
1368393.33096598 1348984.25616723 1368888.91632413
1384285.35059149 1359852.05488950 1376544.26664149
1374443.97588381 1383203.36429784 1370513.76463726
1379798.26944291
Val [26] 5609394.59447534 5608706.84326396
5609342.33096598 5589933.25616723 5609837.91632413
5625234.35059149 5600801.05488950 5617493.26664149
5615392.97588381 5624152.36429784 5611462.76463726
5620747.26944291
Lys [27] 1504090.59447534 1503402.84326396
1504038.33096598 1484629.25616723 1504533.91632413
1519930.35059149 1495497.05488950 1512189.26664149
1510088.97588381 1518848.36429784 1506158.76463726
1515443.26944291
Ala [28] 1984806.59447534 1984118.84326396
1984754.33096598 1965345.25616723 1985249.91632413
2000646.35059149 1976213.05488950 1992905.26664149
1990804.97588381 1999564.36429784 1986874.76463726
1996159.26944291
Lys [29] 1325809.59447534 1325121.84326396
1325757.33096598 1306348.25616723 1326252.91632413
1341649.35059149 1317216.05488950 1333908.26664149
1331807.97588381 1340567.36429784 1327877.76463726
1337162.26944291
Thr [30] 3682963.59447534 3682275.84326396
3682911.33096598 3663502.25616723 3683406.91632413
3698803.35059149 3674370.05488950 3691062.26664149
3688961.97588381 3697721.36429784 3685031.76463726
3694316.26944291
Gln [31] 3564536.59447534 3563848.84326396
3564484.33096598 3545075.25616723 3564979.91632413
3580376.35059149 3555943.05488950 3572635.26664149
3570534.97588381 3579294.36429784 3566604.76463726
3575889.26944291
Asp [32] 1755760.59447534 1755072.84326396
1755708.33096598 1736299.25616723 1756203.91632413
1771600.35059149 1747167.05488950 1763859.26664149
1761758.97588381 1770518.36429784 1757828.76463726
1767113.26944291
Lys [33] 2073004.59447534 2072316.84326396
2072952.33096598 2053543.25616723 2073447.91632413
2088844.35059149 2064411.05488950 2081103.26664149
2079002.97588381 2087762.36429784 2075072.76463726
2084357.26944291
Glu [34] 973448.59447534 972760.84326396
973396.33096598 953987.25616723 973891.91632413
989288.35059149 964855.05488950 981547.26664149
979446.97588381 988206.36429784 975516.76463726
984801.26944291
Gly [35] 1240208.59447534 1239520.84326396
1240156.33096598 1220747.25616723 1240651.91632413
1256048.35059149 1231615.05488950 1248307.26664149
1246206.97588381 1254966.36429784 1242276.76463726
1251561.26944291
Ile [36] 1641594.59447534 1640906.84326396
1641542.33096598 1622133.25616723 1642037.91632413
1657434.35059149 1633001.05488950 1649693.26664149
1647592.97588381 1656352.36429784 1643662.76463726
1652947.26944291
Asp [39] 695892.59447534 695204.84326396
695840.33096598 676431.25616723 696335.91632413
711732.35059149 687299.05488950 703991.26664149
701890.97588381 710650.36429784 697960.76463726
707245.26944291
Gln [40] 1352854.59447534 1352166.84326396
1352802.33096598 1333393.25616723 1353297.91632413
1368694.35059149 1344261.05488950 1360953.26664149
1358852.97588381 1367612.36429784 1354922.76463726
1364207.26944291
Gln [41] 1201501.59447534 1200813.84326396
1201449.33096598 1182040.25616723 1201944.91632413
1217341.35059149 1192908.05488950 1209600.26664149
1207499.97588381 1216259.36429784 1203569.76463726
1212854.26944291
Arg [42] 5832818.59447534 5832130.84326396
5832766.33096598 5813357.25616723 5833261.91632413
5848658.35059149 5824225.05488950 5840917.26664149
5838816.97588381 5847576.36429784 5834886.76463726
5844171.26944291
Leu [43] 2200392.59447534 2199704.84326396
2200340.33096598 2180931.25616723 2200835.91632413
2216232.35059149 2191799.05488950 2208491.26664149
2206390.97588381 2215150.36429784 2202460.76463726
2211745.26944291
Ile [44] 1261210.59447534 1260522.84326396
1261158.33096598 1241749.25616723 1261653.91632413
1277050.35059149 1252617.05488950 1269309.26664149
1267208.97588381 1275968.36429784 1263278.76463726
1272563.26944291
Phe [45] 1340131.59447534 1339443.84326396
1340079.33096598 1320670.25616723 1340574.91632413
1355971.35059149 1331538.05488950 1348230.26664149
1346129.97588381 1354889.36429784 1342199.76463726
1351484.26944291
Ala [46] 683046.59447534 682358.84326396
682994.33096598 663585.25616723 683489.91632413
698886.35059149 674453.05488950 691145.26664149
689044.97588381 697804.36429784 685114.76463726
694399.26944291
Gly [47] 1240282.59447534 1239594.84326396
1240230.33096598 1220821.25616723 1240725.91632413
1256122.35059149 1231689.05488950 1248381.26664149
1246280.97588381 1255040.36429784 1242350.76463726
1251635.26944291
Lys [48] 4334363.59447534 4333675.84326396
4334311.33096598 4314902.25616723 4334806.91632413
4350203.35059149 4325770.05488950 4342462.26664149
4340361.97588381 4349121.36429784 4336431.76463726
4345716.26944291
Gln [49] 1259901.59447534 1259213.84326396
1259849.33096598 1240440.25616723 1260344.91632413
1275741.35059149 1251308.05488950 1268000.26664149
1265899.97588381 1274659.36429784 1261969.76463726
1271254.26944291
Leu [50] 2101483.59447534 2100795.84326396
2101431.33096598 2082022.25616723 2101926.91632413
2117323.35059149 2092890.05488950 2109582.26664149
2107481.97588381 2116241.36429784 2103551.76463726
2112836.26944291
Glu [51] 1803723.59447534 1803035.84326396
1803671.33096598 1784262.25616723 1804166.91632413
1819563.35059149 1795130.05488950 1811822.26664149
1809721.97588381 1818481.36429784 1805791.76463726
1815076.26944291
Asp [52] 2204322.59447534 2203634.84326396
2204270.33096598 2184861.25616723 2204765.91632413
2220162.35059149 2195729.05488950 2212421.26664149
2210320.97588381 2219080.36429784 2206390.76463726
2215675.26944291
Arg [54] 651098.59447534 650410.84326396
651046.33096598 631637.25616723 651541.91632413
666938.35059149 642505.05488950 659197.26664149
657096.97588381 665856.36429784 653166.76463726
662451.26944291
Thr [55] 1251252.59447534 1250564.84326396
1251200.33096598 1231791.25616723 1251695.91632413
1267092.35059149 1242659.05488950 1259351.26664149
1257250.97588381 1266010.36429784 1253320.76463726
1262605.26944291
Leu [56] 813335.59447534 812647.84326396
813283.33096598 793874.25616723 813778.91632413
829175.35059149 804742.05488950 821434.26664149
819333.97588381 828093.36429784 815403.76463726
824688.26944291
Ser [57] 935176.59447534 934488.84326396
935124.33096598 915715.25616723 935619.91632413
951016.35059149 926583.05488950 943275.26664149
941174.97588381 949934.36429784 937244.76463726
946529.26944291
Asp [58] 1418505.59447534 1417817.84326396
1418453.33096598 1399044.25616723 1418948.91632413
1434345.35059149 1409912.05488950 1426604.26664149
1424503.97588381 1433263.36429784 1420573.76463726
1429858.26944291
Tyr [59] 716485.59447534 715797.84326396
716433.33096598 697024.25616723 716928.91632413
732325.35059149 707892.05488950 724584.26664149
722483.97588381 731243.36429784 718553.76463726
727838.26944291
Asn [60] 988517.59447534 987829.84326396
988465.33096598 969056.25616723 988960.91632413
1004357.35059149 979924.05488950 996616.26664149
994515.97588381 1003275.36429784 990585.76463726
999870.26944291
Ile [61] 1273854.59447534 1273166.84326396
1273802.33096598 1254393.25616723 1274297.91632413
1289694.35059149 1265261.05488950 1281953.26664149
1279852.97588381 1288612.36429784 1275922.76463726
1285207.26944291
Gln [62] 1548162.59447534 1547474.84326396
1548110.33096598 1528701.25616723 1548605.91632413
1564002.35059149 1539569.05488950 1556261.26664149
1554160.97588381 1562920.36429784 1550230.76463726
1559515.26944291
Lys [63] 1830130.59447534 1829442.84326396
1830078.33096598 1810669.25616723 1830573.91632413
1845970.35059149 1821537.05488950 1838229.26664149
1836128.97588381 1844888.36429784 1832198.76463726
1841483.26944291
Glu [64] 1063413.59447534 1062725.84326396
1063361.33096598 1043952.25616723 1063856.91632413
1079253.35059149 1054820.05488950 1071512.26664149
1069411.97588381 1078171.36429784 1065481.76463726
1074766.26944291
Ser [65] 556843.59447534 556155.84326396
556791.33096598 537382.25616723 557286.91632413
572683.35059149 548250.05488950 564942.26664149
562841.97588381 571601.36429784 558911.76463726
568196.26944291
Thr [66] 673180.59447534 672492.84326396
673128.33096598 653719.25616723 673623.91632413
689020.35059149 664587.05488950 681279.26664149
679178.97588381 687938.36429784 675248.76463726
684533.26944291
Leu [67] 1889886.59447534 1889198.84326396
1889834.33096598 1870425.25616723 1890329.91632413
1905726.35059149 1881293.05488950 1897985.26664149
1895884.97588381 1904644.36429784 1891954.76463726
1901239.26944291
His [68] 427689.59447534 427001.84326396
427637.33096598 408228.25616723 428132.91632413
443529.35059149 419096.05488950 435788.26664149
433687.97588381 442447.36429784 429757.76463726
439042.26944291
Leu [69] 2044836.59447534 2044148.84326396
2044784.33096598 2025375.25616723 2045279.91632413
2060676.35059149 2036243.05488950 2052935.26664149
2050834.97588381 2059594.36429784 2046904.76463726
2056189.26944291
Val [70] 1247957.59447534 1247269.84326396
1247905.33096598 1228496.25616723 1248400.91632413
1263797.35059149 1239364.05488950 1256056.26664149
1253955.97588381 1262715.36429784 1250025.76463726
1259310.26944291
Leu [71] 613186.59447534 612498.84326396
613134.33096598 593725.25616723 613629.91632413
629026.35059149 604593.05488950 621285.26664149
619184.97588381 627944.36429784 615254.76463726
624539.26944291
Arg [72] 1857788.59447534 1857100.84326396
1857736.33096598 1838327.25616723 1858231.91632413
1873628.35059149 1849195.05488950 1865887.26664149
1863786.97588381 1872546.36429784 1859856.76463726
1869141.26944291
Leu [73] 2298012.59447534 2297324.84326396
2297960.33096598 2278551.25616723 2298455.91632413
2313852.35059149 2289419.05488950 2306111.26664149
2304010.97588381 2312770.36429784 2300080.76463726
2309365.26944291
Arg [74] 1940356.59447534 1939668.84326396
1940304.33096598 1920895.25616723 1940799.91632413
1956196.35059149 1931763.05488950 1948455.26664149
1946354.97588381 1955114.36429784 1942424.76463726
1951709.26944291
Gly [75] 1589236.59447534 1588548.84326396
1589184.33096598 1569775.25616723 1589679.91632413
1605076.35059149 1580643.05488950 1597335.26664149
1595234.97588381 1603994.36429784 1591304.76463726
1600589.26944291
Gly [76] 920699.59447534 920011.84326396
920647.33096598 901238.25616723 921142.91632413
936539.35059149 912106.05488950 928798.26664149
926697.97588381 935457.36429784 922767.76463726
932052.26944291
SECTION: details
Fitted function: f(t) = I0 * e-t/T1 to fit I0 and T1
Random error estimation of data: RMS per spectrum (or trace/plane)
Systematic error estimation of data: worst case per peak scenario
Fit parameter Error estimation method: from fit using calculated y
uncertainties
Confidence level: 95%
Used peaks: peaks from
E:\data\dynamic\nmr\sample_ber\2D-Ref\pdata\10\peaklist.xml
Used integrals: peak intensities
Used Mixing time: all values (including replicates) used
SECTION: results
Peak name F1 [ppm] F2 [ppm] T1 [s] error
errorScale
Gln [2] 122.508 8.898 0.4560 0.012326
2.2281
Ile [3] 114.800 8.280 0.4289 0.0089800
2.2281
Phe [4] 118.172 8.565 0.4259 0.015866
2.2281
Val [5] 120.902 9.256 0.4446 0.0084807
2.2281
Lys [6] 127.647 8.914 0.4386 0.0032737
2.2281
Thr [7] 115.121 8.703 0.4505 0.012887
2.2281
Leu [8] 120.902 9.061 0.4464 0.017357
2.2281
Thr [9] 105.486 7.596 0.5081 0.016893
2.2281
Gly [10] 108.858 7.784 0.4789 0.0045383
2.2281
Lys [11] 121.545 7.230 0.5006 0.0087386
2.2281
Thr [12] 120.260 8.581 0.4621 0.028354
2.2281
Ile [13] 127.326 9.508 0.4400 0.014724
2.2281
Thr [14] 121.223 8.679 0.4547 0.011743
2.2281
Leu [15] 124.756 8.695 0.4387 0.033559
2.2281
Glu [16] 122.139 8.081 0.4792 0.038163
2.2281
Val [17] 117.209 8.898 0.4377 0.013371
2.2281
Glu [18] 119.136 8.630 0.4744 0.025534
2.2281
Ser [20] 103.077 6.994 0.4458 0.0075985
2.2281
Asp [21] 123.472 8.003 0.4257 0.0036873
2.2281
Thr [22] 108.697 7.832 0.4396 0.012438
2.2281
Ile [23] 120.902 8.483 0.4054 0.018904
2.2281
Asn [25] 121.063 7.889 0.4174 0.010689
2.2281
Val [26] 122.187 8.076 0.4688 0.035345
2.2281
Lys [27] 118.654 8.516 0.4233 0.013666
2.2281
Ala [28] 123.151 7.946 0.4193 0.014360
2.2281
Lys [29] 119.778 7.824 0.4298 0.011476
2.2281
Thr [30] 120.902 8.247 0.4132 0.026029
2.2281
Gln [31] 123.151 8.516 0.4216 0.023199
2.2281
Asp [32] 119.457 7.979 0.4268 0.011464
2.2281
Lys [33] 115.121 7.393 0.4560 0.014005
2.2281
Glu [34] 113.997 8.687 0.4468 0.0067758
2.2281
Gly [35] 108.537 8.459 0.4452 0.0072146
2.2281
Ile [36] 119.939 6.124 0.5023 0.011122
2.2281
Asp [39] 113.194 8.483 0.4360 0.0041799
2.2281
Gln [40] 116.566 7.784 0.4435 0.0097303
2.2281
Gln [41] 117.690 7.434 0.4496 0.010974
2.2281
Arg [42] 122.669 8.467 0.4386 0.060259
2.2281
Leu [43] 124.114 8.776 0.4603 0.027054
2.2281
Ile [44] 122.026 9.085 0.4387 0.012389
2.2281
Phe [45] 124.756 8.809 0.4413 0.014084
2.2281
Ala [46] 132.465 8.931 0.4601 0.017401
2.2281
Gly [47] 102.113 8.044 0.4563 0.0095167
2.2281
Lys [48] 121.705 7.946 0.4543 0.034380
2.2281
Gln [49] 122.669 8.589 0.4730 0.0099851
2.2281
Leu [50] 125.399 8.516 0.4455 0.020395
2.2281
Glu [51] 122.829 8.337 0.4687 0.018214
2.2281
Asp [52] 119.939 8.109 0.4888 0.017327
2.2281
Arg [54] 118.975 7.426 0.4561 0.0059463
2.2281
Thr [55] 108.537 8.792 0.4396 0.013766
2.2281
Leu [56] 117.690 8.109 0.4221 0.0064286
2.2281
Ser [57] 113.194 8.434 0.4351 0.0057569
2.2281
Asp [58] 124.114 7.897 0.4207 0.010105
2.2281
Tyr [59] 115.442 7.222 0.4493 0.0055646
2.2281
Asn [60] 115.603 8.109 0.4377 0.0058785
2.2281
Ile [61] 118.493 7.206 0.4270 0.010546
2.2281
Gln [62] 124.596 7.572 0.5067 0.012662
2.2281
Lys [63] 120.260 8.434 0.4619 0.0094808
2.2281
Glu [64] 114.318 9.272 0.4312 0.0095453
2.2281
Ser [65] 114.639 7.629 0.4568 0.0043694
2.2281
Thr [66] 117.048 8.662 0.4584 0.0054046
2.2281
Leu [67] 127.486 9.370 0.4410 0.018436
2.2281
His [68] 119.136 9.191 0.4451 0.0043067
2.2281
Leu [69] 123.632 8.255 0.4447 0.015813
2.2281
Val [70] 126.362 9.134 0.4319 0.011793
2.2281
Leu [71] 122.669 8.044 0.4596 0.0046414
2.2281
Arg [72] 123.472 8.557 0.4622 0.012209
2.2281
Leu [73] 124.114 8.288 0.5386 0.016241
2.2281
Arg [74] 121.545 8.378 0.6202 0.020482
2.2281
Gly [75] 110.624 8.426 0.8603 0.038094
2.2281
Gly [76] 114.800 7.889 1.311 0.011609
2.2281