| Trees | Indices | Help |
|
|---|
|
|
|
|||
|
|||
|
|||
|
|||
Imports: Float64, sum, transpose, zeros
|
|||
Function to calculate the chi-squared value.
The chi-sqared equation
~~~~~~~~~~~~~~~~~~~~~~~
_n_
\ (yi - yi()) ** 2
Chi2 = > ----------------
/__ sigma_i ** 2
i=1
where:
yi are the values of the measured data set.
yi() are the values of the back calculated data set.
sigma_i are the values of the error set.
The chi-squared value is returned.
|
Function to create the chi-squared gradient.
The chi-sqared gradient
~~~~~~~~~~~~~~~~~~~~~~~
_n_
dChi2 \ / yi - yi() dyi() \
------- = -2 > | ---------- . ------- |
dthetaj /__ \ sigma_i**2 dthetaj /
i=1
where:
yi are the values of the measured data set.
yi() are the values of the back calculated data set.
sigma_i are the values of the error set.
The chi-squared gradient vector is returned.
|
Function to create the chi-squared Hessian.
The chi-squared Hessian
~~~~~~~~~~~~~~~~~~~~~~~
_n_
d2chi2 \ 1 / dyi() dyi() d2yi() \
--------------- = 2 > ---------- | ------- . ------- - (yi - yi()) . --------------- |
dthetaj.dthetak /__ sigma_i**2 \ dthetaj dthetak dthetaj.dthetak /
i=1
where:
yi are the values of the measured relaxation data set.
yi() are the values of the back calculated relaxation data set.
sigma_i are the values of the error set.
|
| Trees | Indices | Help |
|
|---|
| Generated by Epydoc 3.0.1 on Wed Apr 10 13:58:20 2013 | http://epydoc.sourceforge.net |