| Trees | Indices | Help |
|
|---|
|
|
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
Imports: sqrt, outerproduct
|
|||
Weight for spherical diffusion. c0 = 1. |
Weights for spheroidal diffusion.
The equations are
c-1 = 1/4 (3dz**2 - 1)**2,
c0 = 3dz**2 (1 - dz**2),
c1 = 3/4 (dz**2 - 1)**2,
where dz is the direction cosine of the unit bond vector along the z-axis of the diffusion
tensor which is calculated as the dot product of the unit bond vector with a unit vector along
Dpar.
|
Weight gradient for spheroidal diffusion.
The equations are
dc-1 ddz
---- = 3dz (3dz**2 - 1) --- ,
dOi dOi
dc0 ddz
--- = 6dz (1 - 2dz**2) --- ,
dOi dOi
dc1 ddz
--- = 3dz (dz**2 - 1) --- ,
dOi dOi
where the orientation parameter set O is {theta, phi}.
|
Weight Hessian for spheroidal diffusion.
The equations are
d2c-1 / ddz ddz d2dz \
------- = 3 |(9dz**2 - 1) --- . --- + dz (3dz**2 - 1) ------- | ,
dOi.dOj \ dOi dOj dOi.dOj /
d2c0 / ddz ddz d2dz \
------- = 6 |(1 - 6dz**2) --- . --- + dz (1 - 2dz**2) ------- | ,
dOi.dOj \ dOi dOj dOi.dOj /
d2c1 / ddz ddz d2dz \
------- = 3 |(3dz**2 - 1) --- . --- + dz (dz**2 - 1) ------- | ,
dOi.dOj \ dOi dOj dOi.dOj /
where the orientation parameter set O is {theta, phi}.
|
Weight equations for ellipsoidal diffusion.
The equations are
c-2 = 1/4 (d - e),
c-1 = 3dy**2.dz**2,
c0 = 3dx**2.dz**2,
c1 = 3dx**2.dy**2,
c2 = 1/4 (d + e),
where
d = 3(dx**4 + dy**4 + dz**4) - 1,
e = 1/R [(1 + 3Dr)(dx**4 + 2dy**2.dz**2) + (1 - 3Dr)(dy**4 + 2dx**2.dz**2)
- 2(dz**4 + 2dx**2.dy**2)],
and where the factor R is defined as
___________
R = V 1 + 3Dr**2.
dx, dy, and dz are the direction cosines of the XH bond vector along the x, y, and z-axes of the
diffusion tensor, calculated as the dot product of the unit bond vector and the unit vectors
along Dx, Dy, and Dz respectively.
|
Weight gradient for ellipsoidal diffusion.
Oi partial derivatives
~~~~~~~~~~~~~~~~~~~~~~
dc-2 / ddx ddy ddz \ de
---- = 3 | dx**3 --- + dy**3 --- + dz**3 --- | - --- ,
dOi \ dOi dOi dOi / dOi
dc-1 / ddz ddy \
---- = 6dy.dz | dy --- + dz --- | ,
dOi \ dOi dOi /
dc0 / ddz ddx \
--- = 6dx.dz | dx --- + dz --- | ,
dOi \ dOi dOi /
dc1 / ddy ddx \
--- = 6dx.dy | dx --- + dy --- | ,
dOi \ dOi dOi /
dc2 / ddx ddy ddz \ de
--- = 3 | dx**3 --- + dy**3 --- + dz**3 --- | + --- ,
dOi \ dOi dOi dOi / dOi
where
de 1 / / ddx / ddz ddy \ \
--- = - | (1 + 3Dr) |dx**3 --- + dy.dz | dy --- + dz --- | |
dOi R \ \ dOi \ dOi dOi / /
/ ddy / ddz ddx \ \
+ (1 - 3Dr) | dy**3 --- + dx.dz | dx --- + dz --- | |
\ dOi \ dOi dOi / /
/ ddz / ddy ddx \ \ \
- 2 | dz**3 --- + dx.dy | dx --- + dy --- | | | ,
\ dOi \ dOi dOi / / /
and where the orietation parameter set O is
O = {alpha, beta, gamma}.
tm partial derivatives
~~~~~~~~~~~~~~~~~~~~~~
dc-2
---- = 0,
dtm
dc-1
---- = 0,
dtm
dc0
--- = 0,
dtm
dc1
--- = 0,
dtm
dc2
--- = 0.
dtm
Da partial derivatives
~~~~~~~~~~~~~~~~~~~~~~
dc-2
---- = 0,
dDa
dc-1
---- = 0,
dDa
dc0
--- = 0,
dDa
dc1
--- = 0,
dDa
dc2
--- = 0.
dDa
Dr partial derivatives
~~~~~~~~~~~~~~~~~~~~~~
dc-2 3 de
---- = - - ---,
dDr 4 dDr
dc-1
---- = 0,
dDr
dc0
--- = 0,
dDr
dc1
--- = 0,
dDr
dc2 3 de
--- = - ---,
dDr 4 dDr
where
de 1 / \
--- = ---- | (1 - Dr) (dx**4 + 2dy**2.dz**2) - (1 + Dr) (dy**4 + 2dx**2.dz**2) + 2Dr (dz**4 + 2dx**2.dy**2) | .
dDr R**3 \ /
|
Weight Hessian for ellipsoidal diffusion.
Oi-Oj partial derivatives
~~~~~~~~~~~~~~~~~~~~~~~~~
d2c-2 / / d2dx ddx ddx \ / d2dy ddy ddy \ / d2dz ddz ddz \ \ d2e
------- = 3 | dx**2 | dx ------- + 3 --- . --- | + dy**2 | dy ------- + 3 --- . --- | + dz**2 | dz ------- + 3 --- . --- | | - ------- ,
dOi.dOj \ \ dOi.dOj dOi dOj / \ dOi.dOj dOi dOj / \ dOi.dOj dOi dOj / / dOi.dOj
d2c-1 / d2dz ddz ddz \ / ddy ddz ddz ddy \ / d2dy ddy ddy \
------- = 6 dy**2 | dz ------- + --- . --- | + 12 dy.dz | --- . --- + --- . --- | + 6 dz**2 | dy ------- + --- . --- | ,
dOi.dOj \ dOi.dOj dOi dOj / \ dOi dOj dOi dOj / \ dOi.dOj dOi dOj /
d2c0 / d2dz ddz ddz \ / ddx ddz ddz ddx \ / d2dx ddx ddx \
------- = 6 dx**2 | dz ------- + --- . --- | + 12 dx.dz | --- . --- + --- . --- | + 6 dz**2 | dx ------- + --- . --- | ,
dOi.dOj \ dOi.dOj dOi dOj / \ dOi dOj dOi dOj / \ dOi.dOj dOi dOj /
d2c1 / d2dy ddy ddy \ / ddx ddy ddy ddx \ / d2dx ddx ddx \
------- = 6 dx**2 | dy ------- + --- . --- | + 12 dx.dy | --- . --- + --- . --- | + 6 dy**2 | dx ------- + --- . --- | ,
dOi.dOj \ dOi.dOj dOi dOj / \ dOi dOj dOi dOj / \ dOi.dOj dOi dOj /
d2c2 / / d2dx ddx ddx \ / d2dy ddy ddy \ / d2dz ddz ddz \ \ d2e
------- = 3 | dx**2 | dx ------- + 3 --- . --- | + dy**2 | dy ------- + 3 --- . --- | + dz**2 | dz ------- + 3 --- . --- | | + ------- ,
dOi.dOj \ \ dOi.dOj dOi dOj / \ dOi.dOj dOi dOj / \ dOi.dOj dOi dOj / / dOi.dOj
where
d2e 1 / / / d2dx ddx ddx \ / d2dz ddz ddz \
------- = - | (1 + 3Dr) | dx**2 | dx ------- + 3 --- . --- | + dy**2 | dz ------- + --- . --- |
dOi.dOj R \ \ \ dOi.dOj dOi dOj / \ dOi.dOj dOi dOj /
/ d2dy ddy ddy \ / ddy ddz ddz ddy \ \
+ dz**2 | dy ------- + --- . --- | + 2dy.dz | --- . --- + --- . --- | |
\ dOi.dOj dOi dOj / \ dOi dOj dOi dOj / /
/ / d2dy ddy ddy \ / d2dz ddz ddz \
+ (1 - 3Dr) | dy**2 | dy ------- + 3 --- . --- | + dx**2 | dz ------- + --- . --- |
\ \ dOi.dOj dOi dOj / \ dOi.dOj dOi dOj /
/ d2dx ddx ddx \ / ddx ddz ddz ddx \ \
+ dz**2 | dx ------- + --- . --- | + 2dx.dz | --- . --- + --- . --- | |
\ dOi.dOj dOi dOj / \ dOi dOj dOi dOj / /
/ / d2dz ddz ddz \ / d2dy ddy ddy \
- 2 | dz**2 | dz ------- + 3 --- . --- | + dx**2 | dy ------- + --- . --- |
\ \ dOi.dOj dOi dOj / \ dOi.dOj dOi dOj /
/ d2dx ddx ddx \ / ddx ddy ddy ddx \ \ \
+ dy**2 | dx ------- + --- . --- | + 2dx.dy | --- . --- + --- . --- | | |
\ dOi.dOj dOi dOj / \ dOi dOj dOi dOj / / /
Oi-tm partial derivatives
~~~~~~~~~~~~~~~~~~~~~~~~~
d2c-2
------- = 0,
dOi.dtm
d2c-1
------- = 0,
dOi.dtm
d2c0
------- = 0,
dOi.dtm
d2c1
------- = 0,
dOi.dtm
d2c2
------- = 0.
dOi.dtm
Oi-Da partial derivatives
~~~~~~~~~~~~~~~~~~~~~~~~~
d2c-2
------- = 0,
dOi.dDa
d2c-1
------- = 0,
dOi.dDa
d2c0
------- = 0,
dOi.dDa
d2c1
------- = 0,
dOi.dDa
d2c2
------- = 0.
dOi.dDa
Oi-Dr partial derivatives
~~~~~~~~~~~~~~~~~~~~~~~~~~~
d2c-2 d2e
------- = - 3 -------,
dOi.dDr dOi.dDr
d2c-1
------- = 0,
dOi.dDr
d2c0
------- = 0,
dOi.dDr
d2c1
------- = 0,
dOi.dDr
d2c2 d2e
------- = 3 -------,
dOi.dDr dOi.dDr
where
d2e 1 / / ddx / ddz ddy \ \
------- = ---- | (1 - Dr) | dx**3 --- + dy.dz | dy --- + dz --- | |
dOi.dDr R**3 \ \ dOi \ dOi dOi / /
/ ddy / ddz ddx \ \
- (1 + Dr) | dy**3 --- + dx.dz | dx --- + dz --- | |
\ dOi \ dOi dOi / /
/ ddz / ddy ddx \ \ \
+ 2Dr | dz**3 --- + dx.dy | dx --- + dy --- | | |
\ dOi \ dOi dOi / / /
tm-tm partial derivatives
~~~~~~~~~~~~~~~~~~~~~~~~~
d2c-2
----- = 0,
dtm2
d2c-1
----- = 0,
dtm2
d2c0
---- = 0,
dtm2
d2c1
---- = 0,
dtm2
d2c2
---- = 0.
dtm2
tm-Da partial derivatives
~~~~~~~~~~~~~~~~~~~~~~~~~
d2c-2
------- = 0,
dtm.dDa
d2c-1
------- = 0,
dtm.dDa
d2c0
------- = 0,
dtm.dDa
d2c1
------- = 0,
dtm.dDa
d2c2
------- = 0.
dtm.dDa
tm-Dr partial derivatives
~~~~~~~~~~~~~~~~~~~~~~~~~
d2c-2
------- = 0,
dtm.dDr
d2c-1
------- = 0,
dtm.dDr
d2c0
------- = 0,
dtm.dDr
d2c1
------- = 0,
dtm.dDr
d2c2
------- = 0.
dtm.dDr
Da-Da partial derivatives
~~~~~~~~~~~~~~~~~~~~~~~~~
d2c-2
------ = 0,
dDa**2
d2c-1
------ = 0,
dDa**2
d2c0
------ = 0,
dDa**2
d2c1
------ = 0,
dDa**2
d2c2
------ = 0.
dDa**2
Da-Dr partial derivatives
~~~~~~~~~~~~~~~~~~~~~~~~~
d2c-2
------- = 0,
dDa.dDr
d2c-1
------- = 0,
dDa.dDr
d2c0
------- = 0,
dDa.dDr
d2c1
------- = 0,
dDa.dDr
d2c2
------- = 0.
dDa.dDr
Dr-Dr partial derivatives
~~~~~~~~~~~~~~~~~~~~~~~~~
d2c-2 3 d2e
------ = - - ------,
dDr**2 4 dDr**2
d2c-1
------ = 0,
dDr**2
d2c0
------ = 0,
dDr**2
d2c1
------ = 0,
dDr**2
d2c2 3 d2e
------ = - ------,
dDr**2 4 dDr**2
where
d2e 1 / \
------ = ---- | (6Dr**2 - 9Dr - 1)(dx**4 + 2dy**2.dz**2) + (6Dr**2 + 9Dr - 1)(dy**4 + 2dx**2.dz**2) - 2(6Dr**2 - 1)(ddz*4 + 2dx**2.dy**2) |
dDr**2 R**5 \ /
|
| Trees | Indices | Help |
|
|---|
| Generated by Epydoc 3.0.1 on Wed Apr 10 13:58:20 2013 | http://epydoc.sourceforge.net |