| Trees | Indices | Help |
|
|---|
|
|
|
|||
|
|||
|
|||
|
|||
|
|||
Imports: sqrt
|
|||
Cubic interpolation using f(a), f(b), g(a), and g(b).
Equations
~~~~~~~~~
f(a) = a'a**3 + b'a**2 + c'a + d'
f(b) = a'b**3 + b'b**2 + c'b + d'
g(a) = 3a'a**2 + 2b'a + c'
g(b) = 3a'b**2 + 2b'b + c'
Interpolation
~~~~~~~~~~~~~
The extrema are the roots of the quadratic equation:
3a'*alpha**2 + 2b'*alpha + c' = 0
The cubic interpolant is given by the formula:
g(b) + beta2 - beta1
ac = b - (b - a) . ---------------------
g(b) - g(a) + 2*beta2
where:
f(a) - f(b)
beta1 = g(a) + g(b) - 3 . -----------
a - b
if a < b:
beta2 = sqrt(beta1**2 - g(a).g(b))
else:
beta2 = -sqrt(beta1**2 - g(a).g(b))
|
Cubic Extrapolation using f(a), f(b), g(a), and g(b).
Extrapolation
~~~~~~~~~~~~~
The extrema are the roots of the quadratic equation:
3a'*alpha**2 + 2b'*alpha + c' = 0
The cubic extrapolant is given by the formula:
g(b) + beta2 - beta1
ac = b - (b - a) . ---------------------
g(b) - g(a) + 2*beta2
where:
f(a) - f(b)
beta1 = g(a) + g(b) - 3 . -----------
a - b
if a < b:
beta2 = sqrt(max(0.0, beta1**2 - g(a).g(b)))
else:
beta2 = -sqrt(max(0.0, beta1**2 - g(a).g(b)))
|
Quadratic interpolation using f(a), f(b), and g(a).
The extremum of the quadratic is given by:
1 g(a)
aq = a + - . -------------------------
2 f(a) - f(b) - (a - b)g(a)
|
Quadratic interpolation using g(a) and g(b).
The extremum of the quadratic is given by:
bg(a) - ag(b)
aq = -------------
g(a) - g(b)
|
| Trees | Indices | Help |
|
|---|
| Generated by Epydoc 3.0.1 on Wed Apr 10 13:58:21 2013 | http://epydoc.sourceforge.net |