| Trees | Indices | Help |
|
|---|
|
|
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
__package__ =
|
|||
Imports: cos, sin, dot
|
|||
Function for calculating the direction cosine dz. dz is the dot product between the unit bond vector and the unit vector along Dpar and is given by: dz = XH . Dpar. The unit Dpar vector is:
| sin(theta) * cos(phi) |
Dpar = | sin(theta) * sin(phi) |
| cos(theta) |
|
Function for calculating the partial derivatives of the direction cosine dz. The theta partial derivative of the unit Dpar vector is: dDpar | cos(theta) * cos(phi) | ------ = | cos(theta) * sin(phi) | dtheta | -sin(theta) | The phi partial derivative of the unit Dpar vector is: dDpar | -sin(theta) * sin(phi) | ----- = | sin(theta) * cos(phi) | dphi | 0 | O is the orientational parameter set {theta, phi} |
Function for calculating the second partial derivatives of the direction cosine dz. The theta-theta second partial derivative of the unit Dpar vector is: d2Dpar | -sin(theta) * cos(phi) | ------- = | -sin(theta) * sin(phi) | dtheta2 | -cos(theta) | The theta-phi second partial derivative of the unit Dpar vector is:
d2Dpar | -cos(theta) * sin(phi) |
----------- = | cos(theta) * cos(phi) |
dtheta.dphi | 0 |
The phi-phi second partial derivative of the unit Dpar vector is: dDpar | -sin(theta) * cos(phi) | ----- = | -sin(theta) * sin(phi) | dphi2 | 0 | O is the orientational parameter set {theta, phi} |
Function for calculating the direction cosines dx, dy, and dz. Direction cosinesdx is the dot product between the unit bond vector and the unit vector along Dx. The equation is: dx = XH . Dx dy is the dot product between the unit bond vector and the unit vector along Dy. The equation is: dy = XH . Dy dz is the dot product between the unit bond vector and the unit vector along Dz. The equation is: dz = XH . Dz Unit vectorsThe unit Dx vector is:
| -sin(alpha) * sin(gamma) + cos(alpha) * cos(beta) * cos(gamma) |
Dx = | -sin(alpha) * cos(gamma) - cos(alpha) * cos(beta) * sin(gamma) |
| cos(alpha) * sin(beta) |
The unit Dy vector is:
| cos(alpha) * sin(gamma) + sin(alpha) * cos(beta) * cos(gamma) |
Dy = | cos(alpha) * cos(gamma) - sin(alpha) * cos(beta) * sin(gamma) |
| sin(alpha) * sin(beta) |
The unit Dz vector is:
| -sin(beta) * cos(gamma) |
Dz = | sin(beta) * sin(gamma) |
| cos(beta) |
|
Function for calculating the partial derivatives of the direction cosines dx, dy, and dz. Dx gradientThe alpha partial derivative of the unit Dx vector is:
dDx | -cos(alpha) * sin(gamma) - sin(alpha) * cos(beta) * cos(gamma) |
------ = | -cos(alpha) * cos(gamma) + sin(alpha) * cos(beta) * sin(gamma) |
dalpha | -sin(alpha) * sin(beta) |
The beta partial derivative of the unit Dx vector is:
dDx | -cos(alpha) * sin(beta) * cos(gamma) |
----- = | cos(alpha) * sin(beta) * sin(gamma) |
dbeta | cos(alpha) * cos(beta) |
The gamma partial derivative of the unit Dx vector is:
dDx | -sin(alpha) * cos(gamma) - cos(alpha) * cos(beta) * sin(gamma) |
------ = | sin(alpha) * sin(gamma) - cos(alpha) * cos(beta) * cos(gamma) |
dgamma | 0 |
Dy gradientThe alpha partial derivative of the unit Dy vector is:
dDy | -sin(alpha) * sin(gamma) + cos(alpha) * cos(beta) * cos(gamma) |
------ = | -sin(alpha) * cos(gamma) - cos(alpha) * cos(beta) * sin(gamma) |
dalpha | cos(alpha) * sin(beta) |
The beta partial derivative of the unit Dy vector is:
dDy | -sin(alpha) * sin(beta) * cos(gamma) |
----- = | sin(alpha) * sin(beta) * sin(gamma) |
dbeta | sin(alpha) * cos(beta) |
The gamma partial derivative of the unit Dy vector is:
dDy | cos(alpha) * cos(gamma) - sin(alpha) * cos(beta) * sin(gamma) |
------ = | -cos(alpha) * sin(gamma) - sin(alpha) * cos(beta) * cos(gamma) |
dgamma | 0 |
Dz gradientThe alpha partial derivative of the unit Dz vector is:
dDz | 0 |
------ = | 0 |
dalpha | 0 |
The beta partial derivative of the unit Dz vector is:
dDz | -cos(beta) * cos(gamma) |
----- = | cos(beta) * sin(gamma) |
dbeta | -sin(beta) |
The gamma partial derivative of the unit Dz vector is:
dDz | sin(beta) * sin(gamma) |
------ = | sin(beta) * cos(gamma) |
dgamma | 0 |
|
Function for calculating the second partial derivatives of the direction cosines dx, dy, dz. Dx HessianThe alpha-alpha second partial derivative of the unit Dx vector is:
d2Dx | sin(alpha) * sin(gamma) - cos(alpha) * cos(beta) * cos(gamma) |
------- = | sin(alpha) * cos(gamma) + cos(alpha) * cos(beta) * sin(gamma) |
dalpha2 | -cos(alpha) * sin(beta) |
The alpha-beta second partial derivative of the unit Dx vector is:
d2Dx | sin(alpha) * sin(beta) * cos(gamma) |
------------ = | -sin(alpha) * sin(beta) * sin(gamma) |
dalpha.dbeta | -sin(alpha) * cos(beta) |
The alpha-gamma second partial derivative of the unit Dx vector is:
d2Dx | -cos(alpha) * cos(gamma) + sin(alpha) * cos(beta) * sin(gamma) |
------------- = | cos(alpha) * sin(gamma) + sin(alpha) * cos(beta) * cos(gamma) |
dalpha.dgamma | 0 |
The beta-beta second partial derivative of the unit Dx vector is:
d2Dx | -cos(alpha) * cos(beta) * cos(gamma) |
------ = | cos(alpha) * cos(beta) * sin(gamma) |
dbeta2 | -cos(alpha) * sin(beta) |
The beta-gamma second partial derivative of the unit Dx vector is:
d2Dx | cos(alpha) * sin(beta) * sin(gamma) |
------------ = | cos(alpha) * sin(beta) * cos(gamma) |
dbeta.dgamma | 0 |
The gamma-gamma second partial derivative of the unit Dx vector is:
d2Dx | sin(alpha) * sin(gamma) - cos(alpha) * cos(beta) * cos(gamma) |
------- = | sin(alpha) * cos(gamma) + cos(alpha) * cos(beta) * sin(gamma) |
dgamma2 | 0 |
Dy HessianThe alpha-alpha second partial derivative of the unit Dy vector is:
d2Dy | -cos(alpha) * sin(gamma) - sin(alpha) * cos(beta) * cos(gamma) |
------- = | -cos(alpha) * cos(gamma) + sin(alpha) * cos(beta) * sin(gamma) |
dalpha2 | -sin(alpha) * sin(beta) |
The alpha-beta second partial derivative of the unit Dy vector is:
d2Dy | -cos(alpha) * sin(beta) * cos(gamma) |
------------ = | cos(alpha) * sin(beta) * sin(gamma) |
dalpha.dbeta | cos(alpha) * cos(beta) |
The alpha-gamma second partial derivative of the unit Dy vector is:
d2Dy | -sin(alpha) * cos(gamma) - cos(alpha) * cos(beta) * sin(gamma) |
------------- = | sin(alpha) * sin(gamma) - cos(alpha) * cos(beta) * cos(gamma) |
dalpha.dgamma | 0 |
The beta-beta second partial derivative of the unit Dy vector is:
d2Dy | -sin(alpha) * cos(beta) * cos(gamma) |
------ = | sin(alpha) * cos(beta) * sin(gamma) |
dbeta2 | -sin(alpha) * sin(beta) |
The beta-gamma second partial derivative of the unit Dy vector is:
d2Dy | sin(alpha) * sin(beta) * sin(gamma) |
------------ = | sin(alpha) * sin(beta) * cos(gamma) |
dbeta.dgamma | 0 |
The gamma-gamma second partial derivative of the unit Dy vector is:
d2Dy | -cos(alpha) * sin(gamma) - sin(alpha) * cos(beta) * cos(gamma) |
------- = | -cos(alpha) * cos(gamma) + sin(alpha) * cos(beta) * sin(gamma) |
dgamma2 | 0 |
Dz HessianThe alpha-alpha second partial derivative of the unit Dz vector is:
d2Dz | 0 |
------- = | 0 |
dalpha2 | 0 |
The alpha-beta second partial derivative of the unit Dz vector is:
d2Dz | 0 |
------------ = | 0 |
dalpha.dbeta | 0 |
The alpha-gamma second partial derivative of the unit Dz vector is:
d2Dz | 0 |
------------- = | 0 |
dalpha.dgamma | 0 |
The beta-beta second partial derivative of the unit Dz vector is:
d2Dz | sin(beta) * cos(gamma) |
------ = | -sin(beta) * sin(gamma) |
dbeta2 | -cos(beta) |
The beta-gamma second partial derivative of the unit Dz vector is:
d2Dz | cos(beta) * sin(gamma) |
------------ = | cos(beta) * cos(gamma) |
dbeta.dgamma | 0 |
The gamma-gamma second partial derivative of the unit Dz vector is:
d2Dz | sin(beta) * cos(gamma) |
------- = | -sin(beta) * sin(gamma) |
dgamma2 | 0 |
|
| Trees | Indices | Help |
|
|---|
| Generated by Epydoc 3.0.1 on Wed Aug 26 11:41:03 2020 | http://epydoc.sourceforge.net |