| Trees | Indices | Help |
|
|---|
|
|
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
__package__ =
|
|||
Imports: sum
|
|||
Spectral density function. Calculate the spectral density values for the original model-free formula with no parameters {} with or without diffusion tensor parameters. The formula is:
_k_
2 \ 1
J(w) = - > ci . ti ------------.
5 /__ 1 + (w.ti)^2
i=-k
|
Spectral density function. Calculate the spectral density values for the original model-free formula with the single parameter {S2} with or without diffusion tensor parameters. The formula is:
_k_
2 \ 1
J(w) = - S2 > ci . ti ------------.
5 /__ 1 + (w.ti)^2
i=-k
|
Spectral density function. Calculate the spectral density values for the original model-free formula with the parameters {S2, te} with or without diffusion tensor parameters. The model-free formula is:
_k_
2 \ / S2 (1 - S2)(te + ti)te \
J(w) = - > ci . ti | ------------ + ------------------------- |.
5 /__ \ 1 + (w.ti)^2 (te + ti)^2 + (w.te.ti)^2 /
i=-k
|
Spectral density function. Calculate the spectral density values for the extended model-free formula with the parameters {S2f, S2, ts} with or without diffusion tensor parameters. The model-free formula is:
_k_
2 \ / S2 (S2f - S2)(ts + ti)ts \
J(w) = - > ci . ti | ------------ + ------------------------- |.
5 /__ \ 1 + (w.ti)^2 (ts + ti)^2 + (w.ts.ti)^2 /
i=-k
|
Spectral density function. Calculate the spectral density values for the extended model-free formula with the parameters {S2f, tf, S2, ts} with or without diffusion tensor parameters. The model-free formula is:
_k_
2 \ / S2 (1 - S2f)(tf + ti)tf (S2f - S2)(ts + ti)ts \
J(w) = - > ci . ti | ------------ + ------------------------- + ------------------------- |.
5 /__ \ 1 + (w.ti)^2 (tf + ti)^2 + (w.tf.ti)^2 (ts + ti)^2 + (w.ts.ti)^2 /
i=-k
|
Spectral density function. Calculate the spectral density values for the extended model-free formula with the parameters {S2f, S2s, ts} with or without diffusion tensor parameters. The model-free formula is:
_k_
2 \ / S2s (1 - S2s)(ts + ti)ts \
J(w) = - S2f > ci . ti | ------------ + ------------------------- |.
5 /__ \ 1 + (w.ti)^2 (ts + ti)^2 + (w.ts.ti)^2 /
i=-k
|
Spectral density function. Calculate the spectral density values for the extended model-free formula with the parameters {S2f, tf, S2s, ts} with or without diffusion tensor parameters. The model-free formula is:
_k_
2 \ / S2f . S2s (1 - S2f)(tf + ti)tf S2f(1 - S2s)(ts + ti)ts \
J(w) = - > ci . ti | ------------ + ------------------------- + ------------------------- |.
5 /__ \ 1 + (w.ti)^2 (tf + ti)^2 + (w.tf.ti)^2 (ts + ti)^2 + (w.ts.ti)^2 /
i=-k
|
Spectral density gradient. Calculate the spectral desity values for the Gj partial derivative of the original model-free formula with no parameters {} together with diffusion tensor parameters. The model-free gradient is:
_k_
dJ(w) 2 \ dti 1 - (w.ti)^2
----- = - > ci . --- ----------------.
dGj 5 /__ dGj (1 + (w.ti)^2)^2
i=-k
|
Spectral density gradient. Calculate the spectral desity values for the Gj partial derivative of the original model-free formula with no parameters {} together with diffusion tensor parameters. The model-free gradient is:
_k_
dJ(w) 2 \ / dti 1 - (w.ti)^2 dci 1 \
----- = - > | ci . --- ---------------- + --- . ti ------------ |.
dGj 5 /__ \ dGj (1 + (w.ti)^2)^2 dGj 1 + (w.ti)^2 /
i=-k
|
Spectral density gradient. Calculate the spectral desity values for the Gj partial derivative of the original model-free formula with the parameter {S2} together with diffusion tensor parameters. The model-free gradient is:
_k_
dJ(w) 2 \ dti 1 - (w.ti)^2
----- = - S2 > ci . --- ----------------.
dGj 5 /__ dGj (1 + (w.ti)^2)^2
i=-k
|
Spectral density gradient. Calculate the spectral desity values for the Gj partial derivative of the original model-free formula with the parameter {S2} together with diffusion tensor parameters. The model-free gradient is:
_k_
dJ(w) 2 \ / dti 1 - (w.ti)^2 dci 1 \
----- = - S2 > | ci . --- ---------------- + --- . ti ------------ |.
dGj 5 /__ \ dGj (1 + (w.ti)^2)^2 dGj 1 + (w.ti)^2 /
i=-k
|
Spectral density gradient. Calculate the spectral desity values for the Gj partial derivative of the original model-free formula with the parameters {S2, te} together with diffusion tensor parameters. The model-free gradient is:
_k_
dJ(w) 2 \ dti / 1 - (w.ti)^2 (te + ti)^2 - (w.te.ti)^2 \
----- = - > ci . --- | S2 ---------------- + (1 - S2)te^2 ----------------------------- |.
dGj 5 /__ dGj \ (1 + (w.ti)^2)^2 ((te + ti)^2 + (w.te.ti)^2)^2 /
i=-k
|
Spectral density gradient. Calculate the spectral desity values for the Gj partial derivative of the original model-free formula with the parameters {S2, te} together with diffusion tensor parameters. The model-free gradient is:
_k_
dJ(w) 2 \ / dti / 1 - (w.ti)^2 (te + ti)^2 - (w.te.ti)^2 \
----- = - > | ci . --- | S2 ---------------- + (1 - S2)te^2 ----------------------------- |
dGj 5 /__ \ dGj \ (1 + (w.ti)^2)^2 ((te + ti)^2 + (w.te.ti)^2)^2 /
i=-k
dci / S2 (1 - S2)(te + ti)te \ \
+ --- . ti | ------------ + ------------------------- | |.
dGj \ 1 + (w.ti)^2 (te + ti)^2 + (w.te.ti)^2 / /
|
Spectral density gradient. Calculate the spectral desity values for the O partial derivative of the original model-free formula with no parameters {} together with diffusion tensor parameters. The model-free gradient is:
_k_
dJ(w) 2 \ dci 1
----- = - > --- . ti ------------.
dOj 5 /__ dOj 1 + (w.ti)^2
i=-k
|
Spectral density gradient. Calculate the spectral desity values for the O partial derivative of the original model-free formula with the parameter {S2} together with diffusion tensor parameters. The model-free gradient is:
_k_
dJ(w) 2 \ dci 1
----- = - S2 > --- . ti ------------.
dOj 5 /__ dOj 1 + (w.ti)^2
i=-k
|
Spectral density gradient. Calculate the spectral desity values for the O partial derivative of the original model-free formula with the parameters {S2, te} together with diffusion tensor parameters. The model-free gradient is:
_k_
dJ(w) 2 \ dci / S2 (1 - S2)(te + ti)te \
----- = - > --- . ti | ------------ + ------------------------- |.
dOj 5 /__ dOj \ 1 + (w.ti)^2 (te + ti)^2 + (w.te.ti)^2 /
i=-k
|
Spectral density gradient. Calculate the spectral desity values for the S2 partial derivative of the original model-free formula with the single parameter {S2} with or without diffusion tensor parameters. The model-free gradient is:
_k_
dJ(w) 2 \ 1
----- = - > ci . ti ------------.
dS2 5 /__ 1 + (w.ti)^2
i=-k
|
Spectral density gradient. Calculate the spectral desity values for the S2 partial derivative of the original model-free formula with the parameters {S2, te} with or without diffusion tensor parameters. The model-free gradient is:
_k_
dJ(w) 2 \ / 1 (te + ti)te \
----- = - > ci . ti | ------------ - ------------------------- |.
dS2 5 /__ \ 1 + (w.ti)^2 (te + ti)^2 + (w.te.ti)^2 /
i=-k
|
Spectral density gradient. Calculate the spectral desity values for the te partial derivative of the original model-free formula with the parameters {S2, te} with or without diffusion tensor parameters. The model-free gradient is:
_k_
dJ(w) 2 \ (te + ti)^2 - (w.te.ti)^2
----- = - (1 - S2) > ci . ti^2 -----------------------------.
dte 5 /__ ((te + ti)^2 + (w.te.ti)^2)^2
i=-k
|
Spectral density gradient. Calculate the spectral desity values for the Gj partial derivative of the extended model-free formula with the parameters {S2f, S2, ts} together with diffusion tensor parameters. The formula is:
_k_
dJ(w) 2 \ dti / 1 - (w.ti)^2 (ts + ti)^2 - (w.ts.ti)^2 \
----- = - > ci . --- | S2 ---------------- + (S2f - S2)ts^2 ----------------------------- |.
dGj 5 /__ dGj \ (1 + (w.ti)^2)^2 ((ts + ti)^2 + (w.ts.ti)^2)^2 /
i=-k
|
Spectral density gradient. Calculate the spectral desity values for the Gj partial derivative of the extended model-free formula with the parameters {S2f, S2, ts} together with diffusion tensor parameters. The formula is:
_k_
dJ(w) 2 \ / dti / 1 - (w.ti)^2 (ts + ti)^2 - (w.ts.ti)^2 \
----- = - > | ci . --- | S2 ---------------- + (S2f - S2)ts^2 ----------------------------- |
dGj 5 /__ \ dGj \ (1 + (w.ti)^2)^2 ((ts + ti)^2 + (w.ts.ti)^2)^2 /
i=-k
dci / S2 (S2f - S2)(ts + ti)ts \ \
+ --- . ti | ------------ + ------------------------- | |.
dGj \ 1 + (w.ti)^2 (ts + ti)^2 + (w.ts.ti)^2 / /
|
Spectral density gradient. Calculate the spectral desity values for the Gj partial derivative of the extended model-free formula with the parameters {S2f, tf, S2, ts} together with diffusion tensor parameters. The formula is:
_k_
dJ(w) 2 \ dti / 1 - (w.ti)^2 (tf + ti)^2 - (w.tf.ti)^2 (ts + ti)^2 - (w.ts.ti)^2 \
----- = - > ci . --- | S2 ---------------- + (1 - S2f)tf^2 ----------------------------- + (S2f - S2)ts^2 ----------------------------- |.
dGj 5 /__ dGj \ (1 + (w.ti)^2)^2 ((tf + ti)^2 + (w.tf.ti)^2)^2 ((ts + ti)^2 + (w.ts.ti)^2)^2 /
i=-k
|
Spectral density gradient. Calculate the spectral desity values for the Gj partial derivative of the extended model-free formula with the parameters {S2f, tf, S2, ts} together with diffusion tensor parameters. The formula is:
_k_
dJ(w) 2 \ / dti / 1 - (w.ti)^2 (tf + ti)^2 - (w.tf.ti)^2 (ts + ti)^2 - (w.ts.ti)^2 \
----- = - > | ci . --- | S2 ---------------- + (1 - S2f)tf^2 ----------------------------- + (S2f - S2)ts^2 ----------------------------- |
dGj 5 /__ \ dGj \ (1 + (w.ti)^2)^2 ((tf + ti)^2 + (w.tf.ti)^2)^2 ((ts + ti)^2 + (w.ts.ti)^2)^2 /
i=-k
dci / S2 (1 - S2f)(tf + ti)tf (S2f - S2)(ts + ti)ts \ \
+ --- . ti | ------------ + ------------------------- + ------------------------- | |.
dGj \ 1 + (w.ti)^2 (tf + ti)^2 + (w.tf.ti)^2 (ts + ti)^2 + (w.ts.ti)^2 / /
|
Spectral density gradient. Calculate the spectral desity values for the O partial derivative of the extended model-free formula with the parameters {S2f, S2, ts} together with diffusion tensor parameters. The formula is:
_k_
dJ(w) 2 \ dci / S2 (S2f - S2)(ts + ti)ts \
----- = - > --- . ti | ------------ + ------------------------- |.
dOj 5 /__ dOj \ 1 + (w.ti)^2 (ts + ti)^2 + (w.ts.ti)^2 /
i=-k
|
Spectral density gradient. Calculate the spectral desity values for the O partial derivative of the extended model-free formula with the parameters {S2f, tf, S2, ts} together with diffusion tensor parameters. The formula is:
_k_
dJ(w) 2 \ dci / S2 (1 - S2f)(tf + ti)tf (S2f - S2)(ts + ti)ts \
----- = - > --- . ti | ------------ + ------------------------- + ------------------------- |.
dOj 5 /__ dOj \ 1 + (w.ti)^2 (tf + ti)^2 + (w.tf.ti)^2 (ts + ti)^2 + (w.ts.ti)^2 /
i=-k
|
Spectral density gradient. Calculate the spectral desity values for the S2 partial derivative of the extended model-free formula with the parameters {S2f, S2, ts} or {S2f, tf, S2, ts} with or without diffusion tensor parameters. The formula is:
_k_
dJ(w) 2 \ / 1 (ts + ti).ts \
----- = - > ci . ti | ------------ - ------------------------- |.
dS2 5 /__ \ 1 + (w.ti)^2 (ts + ti)^2 + (w.ts.ti)^2 /
i=-k
|
Spectral density gradient. Calculate the spectral desity values for the S2f partial derivative of the extended model-free formula with the parameters {S2f, S2, ts} with or without diffusion tensor parameters. The formula is:
_k_
dJ(w) 2 \ (ts + ti).ts
----- = - > ci . ti -------------------------.
dS2f 5 /__ (ts + ti)^2 + (w.ts.ti)^2
i=-k
|
Spectral density gradient. Calculate the spectral desity values for the S2f partial derivative of the extended model-free formula with the parameters {S2f, tf, S2, ts} with or without diffusion tensor parameters. The formula is:
_k_
dJ(w) 2 \ / (tf + ti).tf (ts + ti).ts \
----- = - - > ci . ti | ------------------------- - ------------------------- |.
dS2f 5 /__ \ (tf + ti)^2 + (w.tf.ti)^2 (ts + ti)^2 + (w.ts.ti)^2 /
i=-k
|
Spectral density gradient. Calculate the spectral desity values for the tf partial derivative of the extended model-free formula with the parameters {S2f, tf, S2, ts} with or without diffusion tensor parameters. The formula is:
_k_
dJ(w) 2 \ (tf + ti)^2 - (w.tf.ti)^2
----- = - (1 - S2f) > ci . ti^2 -----------------------------.
dtf 5 /__ ((tf + ti)^2 + (w.tf.ti)^2)^2
i=-k
|
Spectral density gradient. Calculate the spectral desity values for the ts partial derivative of the extended model-free formula with the parameters {S2f, S2, ts} or {S2f, tf, S2, ts} with or without diffusion tensor parameters. The formula is:
_k_
dJ(w) 2 \ (ts + ti)^2 - (w.ts.ti)^2
----- = - (S2f - S2) > ci . ti^2 -----------------------------.
dts 5 /__ ((ts + ti)^2 + (w.ts.ti)^2)^2
i=-k
|
Spectral density gradient. Calculate the spectral desity values for the Gj partial derivative of the extended model-free formula with the parameters {S2f, S2s, ts} together with diffusion tensor parameters. The formula is:
_k_
dJ(w) 2 \ dti / 1 - (w.ti)^2 (ts + ti)^2 - (w.ts.ti)^2 \
----- = - S2f > ci . --- | S2s ---------------- + (1 - S2s)ts^2 ----------------------------- |.
dGj 5 /__ dGj \ (1 + (w.ti)^2)^2 ((ts + ti)^2 + (w.ts.ti)^2)^2 /
i=-k
|
Spectral density gradient. Calculate the spectral desity values for the Gj partial derivative of the extended model-free formula with the parameters {S2f, S2s, ts} together with diffusion tensor parameters. The formula is:
_k_
dJ(w) 2 \ / dti / 1 - (w.ti)^2 (ts + ti)^2 - (w.ts.ti)^2 \
----- = - S2f > | ci . --- | S2s ---------------- + (1 - S2s)ts^2 ----------------------------- |
dGj 5 /__ \ dGj \ (1 + (w.ti)^2)^2 ((ts + ti)^2 + (w.ts.ti)^2)^2 /
i=-k
dci / S2s (1 - S2s)(ts + ti)ts \ \
+ --- . ti | ------------ + ------------------------- | |.
dGj \ 1 + (w.ti)^2 (ts + ti)^2 + (w.ts.ti)^2 / /
|
Spectral density gradient. Calculate the spectral desity values for the Gj partial derivative of the extended model-free formula with the parameters {S2f, tf, S2s, ts} together with diffusion tensor parameters. The formula is:
_k_
dJ(w) 2 \ dti / 1 - (w.ti)^2 (tf + ti)^2 - (w.tf.ti)^2 (ts + ti)^2 - (w.ts.ti)^2 \
----- = - > ci . --- | S2f.S2s ---------------- + (1 - S2f)tf^2 ----------------------------- + S2f(1 - S2s)ts^2 ----------------------------- |
dGj 5 /__ dGj \ (1 + (w.ti)^2)^2 ((tf + ti)^2 + (w.tf.ti)^2)^2 ((ts + ti)^2 + (w.ts.ti)^2)^2 /
i=-k
|
Spectral density gradient. Calculate the spectral desity values for the Gj partial derivative of the extended model-free formula with the parameters {S2f, tf, S2s, ts} together with diffusion tensor parameters. The formula is:
_k_
dJ(w) 2 \ / dti / 1 - (w.ti)^2 (tf + ti)^2 - (w.tf.ti)^2 (ts + ti)^2 - (w.ts.ti)^2 \
----- = - > | ci . --- | S2f.S2s ---------------- + (1 - S2f).tf^2 ----------------------------- + S2f(1 - S2s).ts^2 ----------------------------- |
dGj 5 /__ \ dGj \ (1 + (w.ti)^2)^2 ((tf + ti)^2 + (w.tf.ti)^2)^2 ((ts + ti)^2 + (w.ts.ti)^2)^2 /
i=-k
dci / S2f . S2s (1 - S2f)(tf + ti)tf S2f(1 - S2s)(ts + ti)ts \ \
+ --- . ti | ------------ + ------------------------- + ------------------------- | |.
dGj \ 1 + (w.ti)^2 (tf + ti)^2 + (w.tf.ti)^2 (ts + ti)^2 + (w.ts.ti)^2 / /
|
Spectral density gradient. Calculate the spectral desity values for the O partial derivative of the extended model-free formula with the parameters {S2f, S2s, ts} together with diffusion tensor parameters. The formula is:
_k_
dJ(w) 2 \ dci / S2s (1 - S2s)(ts + ti)ts \
----- = - S2f > --- . ti | ------------ + ------------------------- |.
dOj 5 /__ dOj \ 1 + (w.ti)^2 (ts + ti)^2 + (w.ts.ti)^2 /
i=-k
|
Spectral density gradient. Calculate the spectral desity values for the O partial derivative of the extended model-free formula with the parameters {S2f, tf, S2s, ts} together with diffusion tensor parameters. The formula is:
_k_
dJ(w) 2 \ dci / S2f . S2s (1 - S2f)(tf + ti)tf S2f(1 - S2s)(ts + ti)ts \
----- = - > --- . ti | ------------ + ------------------------- + ------------------------- |.
dOj 5 /__ dOj \ 1 + (w.ti)^2 (tf + ti)^2 + (w.tf.ti)^2 (ts + ti)^2 + (w.ts.ti)^2 /
i=-k
|
Spectral density gradient. Calculate the spectral desity values for the S2f partial derivative of the extended model-free formula with the parameters {S2f, S2s, ts} with or without diffusion tensor parameters. The formula is:
_k_
dJ(w) 2 \ / S2s (1 - S2s)(ts + ti).ts \
----- = - > ci . ti | ------------ + ------------------------- |.
dS2f 5 /__ \ 1 + (w.ti)^2 (ts + ti)^2 + (w.ts.ti)^2 /
i=-k
|
Spectral density gradient. Calculate the spectral desity values for the S2f partial derivative of the extended model-free formula with the parameters {S2f, tf, S2s, ts} with or without diffusion tensor parameters. The formula is:
_k_
dJ(w) 2 \ / S2s (tf + ti).tf (1 - S2s)(ts + ti).ts \
----- = - > ci . ti | ------------ - ------------------------- + ------------------------- |.
dS2f 5 /__ \ 1 + (w.ti)^2 (tf + ti)^2 + (w.tf.ti)^2 (ts + ti)^2 + (w.ts.ti)^2 /
i=-k
|
Spectral density gradient. Calculate the spectral desity values for the S2s partial derivative of the extended model-free formula with the parameters {S2f, S2s, ts} or {S2f, tf, S2s, ts} with or without diffusion tensor parameters. The formula is:
_k_
dJ(w) 2 \ / 1 (ts + ti).ts \
----- = - S2f > ci . ti | ------------ - ------------------------- |.
dS2s 5 /__ \ 1 + (w.ti)^2 (ts + ti)^2 + (w.ts.ti)^2 /
i=-k
|
Spectral density gradient. Calculate the spectral desity values for the tf partial derivative of the extended model-free formula with the parameters {S2f, tf, S2s, ts} with or without diffusion tensor parameters. The formula is:
_k_
dJ(w) 2 \ (tf + ti)^2 - (w.tf.ti)^2
----- = - (1 - S2f) > ci . ti^2 -----------------------------.
dtf 5 /__ ((tf + ti)^2 + (w.tf.ti)^2)^2
i=-k
|
Spectral density gradient. Calculate the spectral desity values for the ts partial derivative of the extended model-free formula with the parameters {S2f, S2s, ts} or {S2f, tf, S2s, ts} with or without diffusion tensor parameters. The formula is:
_k_
dJ(w) 2 \ (ts + ti)^2 - (w.ts.ti)^2
----- = - S2f(1 - S2s) > ci . ti^2 -----------------------------.
dts 5 /__ ((ts + ti)^2 + (w.ts.ti)^2)^2
i=-k
|
Spectral density Hessian. Calculate the spectral desity values for the Gj - Gk double partial derivative of the original model-free formula with no parameters {} together with diffusion tensor parameters. The model-free Hessian is:
_k_
d2J(w) 2 \ / dti dti 3 - (w.ti)^2 d2ti 1 - (w.ti)^2 \
------- = - > ci | -2 --- . --- w^2.ti ---------------- + ------- ---------------- |.
dGj.dGk 5 /__ \ dGj dGk (1 + (w.ti)^2)^3 dGj.dGk (1 + (w.ti)^2)^2 /
i=-k
|
Spectral density Hessian. Calculate the spectral desity values for the Gj - Gk double partial derivative of the original model-free formula with no parameters {} together with diffusion tensor parameters. The model-free Hessian is:
_k_
d2J(w) 2 \ / dti dti 3 - (w.ti)^2 / dti dci dti dci d2ti \ 1 - (w.ti)^2 d2ci 1 \
------- = - > | -2ci --- . --- w^2.ti ---------------- + | --- . --- + --- . --- + ci ------- | ---------------- + ------- ti ------------ |.
dGj.dGk 5 /__ \ dGj dGk (1 + (w.ti)^2)^3 \ dGj dGk dGk dGj dGj.dGk / (1 + (w.ti)^2)^2 dGj.dGk 1 + (w.ti)^2 /
i=-k
|
Spectral density Hessian. Calculate the spectral desity values for the Gj - Gk double partial derivative of the original model-free formula with the parameter {S2} together with diffusion tensor parameters. The model-free Hessian is:
_k_
d2J(w) 2 \ / dti dti 3 - (w.ti)^2 d2ti 1 - (w.ti)^2 \
------- = - S2 > ci | -2 --- . --- w^2.ti ---------------- + ------- ---------------- |.
dGj.dGk 5 /__ \ dGj dGk (1 + (w.ti)^2)^3 dGj.dGk (1 + (w.ti)^2)^2 /
i=-k
|
Spectral density Hessian. Calculate the spectral desity values for the Gj - Gk double partial derivative of the original model-free formula with the parameter {S2} together with diffusion tensor parameters. The model-free Hessian is:
_k_
d2J(w) 2 \ / dti dti 3 - (w.ti)^2 / dti dci dti dci d2ti \ 1 - (w.ti)^2 d2ci 1 \
------- = - S2 > | -2ci --- . --- w^2.ti ---------------- + | --- . --- + --- . --- + ci ------- | ---------------- + ------- ti ------------ |.
dGj.dGk 5 /__ \ dGj dGk (1 + (w.ti)^2)^3 \ dGj dGk dGk dGj dGj.dGk / (1 + (w.ti)^2)^2 dGj.dGk 1 + (w.ti)^2 /
i=-k
|
Spectral density Hessian. Calculate the spectral desity values for the Gj - Gk double partial derivative of the original model-free formula with the parameters {S2, te} together with diffusion tensor parameters. The model-free Hessian is:
_k_
d2J(w) 2 \ / dti dti / 3 - (w.ti)^2 (te + ti)^3 + 3.w^2.te^3.ti(te + ti) - (w.te)^4.ti^3 \
------- = - > ci | -2 --- . --- | S2.w^2.ti ---------------- + (1 - S2)te^2 ---------------------------------------------------- |
dGj.dGk 5 /__ \ dGj dGk \ (1 + (w.ti)^2)^3 ((te + ti)^2 + (w.te.ti)^2)^3 /
i=-k
d2ti / 1 - (w.ti)^2 (te + ti)^2 - (w.te.ti)^2 \ \
+ ------- | S2 ---------------- + (1 - S2)te^2 ----------------------------- | |.
dGj.dGk \ (1 + (w.ti)^2)^2 ((te + ti)^2 + (w.te.ti)^2)^2 / /
|
Spectral density Hessian. Calculate the spectral desity values for the Gj - Gk double partial derivative of the original model-free formula with the parameters {S2, te} together with diffusion tensor parameters. The model-free Hessian is:
_k_
d2J(w) 2 \ / dti dti / 3 - (w.ti)^2 (te + ti)^3 + 3.w^2.te^3.ti(te + ti) - (w.te)^4.ti^3 \
------- = - > | -2ci --- . --- | S2.w^2.ti ---------------- + (1 - S2)te^2 ---------------------------------------------------- |
dGj.dGk 5 /__ \ dGj dGk \ (1 + (w.ti)^2)^3 ((te + ti)^2 + (w.te.ti)^2)^3 /
i=-k
/ dti dci dti dci d2ti \ / 1 - (w.ti)^2 (te + ti)^2 - (w.te.ti)^2 \
+ | --- . --- + --- . --- + ci ------- | | S2 ---------------- + (1 - S2)te^2 ----------------------------- |
\ dGj dGk dGk dGj dGj.dGk / \ (1 + (w.ti)^2)^2 ((te + ti)^2 + (w.te.ti)^2)^2 /
d2ci / S2 (1 - S2)(te + ti)te \ \
+ ------- ti | ------------ + ------------------------- | |.
dGj.dGk \ 1 + (w.ti)^2 (te + ti)^2 + (w.te.ti)^2 / /
|
Spectral density Hessian. Calculate the spectral desity values for the Gj - Oj double partial derivative of the original model-free formula with no parameters {} together with diffusion tensor parameters. The model-free Hessian is:
_k_
d2J(w) 2 \ dci dti 1 - (w.ti)^2
------- = - > --- . --- . ----------------.
dGj.dOj 5 /__ dOj dGj (1 + (w.ti)^2)^2
i=-k
|
Spectral density Hessian. Calculate the spectral desity values for the Gj - Oj double partial derivative of the original model-free formula with no parameters {} together with diffusion tensor parameters. The model-free Hessian is:
_k_
d2J(w) 2 \ / dci dti 1 - (w.ti)^2 d2ci 1 \
------- = - > | --- . --- . ---------------- + ------- ti ------------ |.
dGj.dOj 5 /__ \ dOj dGj (1 + (w.ti)^2)^2 dGj.dOj 1 + (w.ti)^2 /
i=-k
|
Spectral density Hessian. Calculate the spectral desity values for the Gj - Oj double partial derivative of the original model-free formula with the parameter {S2} together with diffusion tensor parameters. The model-free Hessian is:
_k_
d2J(w) 2 \ dci dti 1 - (w.ti)^2
------- = - S2 > --- . --- . ----------------.
dGj.dOj 5 /__ dOj dGj (1 + (w.ti)^2)^2
i=-k
|
Spectral density Hessian. Calculate the spectral desity values for the Gj - Oj double partial derivative of the original model-free formula with the parameter {S2} together with diffusion tensor parameters. The model-free Hessian is:
_k_
d2J(w) 2 \ / dci dti 1 - (w.ti)^2 d2ci 1 \
------- = - S2 > | --- . --- . ---------------- + ------- ti ------------ |.
dGj.dOj 5 /__ \ dOj dGj (1 + (w.ti)^2)^2 dGj.dOj 1 + (w.ti)^2 /
i=-k
|
Spectral density Hessian. Calculate the spectral desity values for the Gj - Oj double partial derivative of the original model-free formula with the parameters {S2, te} together with diffusion tensor parameters. The model-free Hessian is:
_k_
d2J(w) 2 \ dci dti / 1 - (w.ti)^2 (te + ti)^2 - (w.te.ti)^2 \
------- = - > --- . --- | S2 ---------------- + (1 - S2)te^2 ----------------------------- |.
dGj.dOj 5 /__ dOj dGj \ (1 + (w.ti)^2)^2 ((te + ti)^2 + (w.te.ti)^2)^2 /
i=-k
|
Spectral density Hessian. Calculate the spectral desity values for the Gj - Oj double partial derivative of the original model-free formula with the parameters {S2, te} together with diffusion tensor parameters. The model-free Hessian is:
_k_
d2J(w) 2 \ / dci dti / 1 - (w.ti)^2 (te + ti)^2 - (w.te.ti)^2 \
------- = - > | --- . --- | S2 ---------------- + (1 - S2)te^2 ----------------------------- |
dGj.dOj 5 /__ \ dOj dGj \ (1 + (w.ti)^2)^2 ((te + ti)^2 + (w.te.ti)^2)^2 /
i=-k
d2ci / S2 (1 - S2)(te + ti)te \ \
+ ------- ti | ------------ + ------------------------- | |.
dGj.dOj \ 1 + (w.ti)^2 (te + ti)^2 + (w.te.ti)^2 / /
|
Spectral density Hessian. Calculate the spectral desity values for the Gj - S2 double partial derivative of the original model-free formula with the parameter {S2} together with diffusion tensor parameters. The model-free Hessian is:
_k_
d2J(w) 2 \ dti 1 - (w.ti)^2
------- = - > ci . --- ----------------.
dGj.dS2 5 /__ dGj (1 + (w.ti)^2)^2
i=-k
|
Spectral density Hessian. Calculate the spectral desity values for the Gj - S2 double partial derivative of the original model-free formula with the parameter {S2} together with diffusion tensor parameters. The model-free Hessian is:
_k_
d2J(w) 2 \ / dti 1 - (w.ti)^2 dci 1 \
------- = - > | ci . --- ---------------- + --- . ti ------------ |.
dGj.dS2 5 /__ \ dGj (1 + (w.ti)^2)^2 dGj 1 + (w.ti)^2 /
i=-k
|
Spectral density Hessian. Calculate the spectral desity values for the Gj - S2 double partial derivative of the original model-free formula with the parameters {S2, te} together with diffusion tensor parameters. The model-free Hessian is:
_k_
d2J(w) 2 \ dti / 1 - (w.ti)^2 (te + ti)^2 - (w.te.ti)^2 \
------- = - > ci . --- | ---------------- - te^2 ----------------------------- |.
dGj.dS2 5 /__ dGj \ (1 + (w.ti)^2)^2 ((te + ti)^2 + (w.te.ti)^2)^2 /
i=-k
|
Spectral density Hessian. Calculate the spectral desity values for the Gj - S2 double partial derivative of the original model-free formula with the parameters {S2, te} together with diffusion tensor parameters. The model-free Hessian is:
_k_
d2J(w) 2 \ / dti / 1 - (w.ti)^2 (te + ti)^2 - (w.te.ti)^2 \
------- = - > | ci . --- | ---------------- - te^2 ----------------------------- |
dGj.dS2 5 /__ \ dGj \ (1 + (w.ti)^2)^2 ((te + ti)^2 + (w.te.ti)^2)^2 /
i=-k
dci / 1 (te + ti)te \ \
+ --- . ti | ------------ - ------------------------- | |.
dGj \ 1 + (w.ti)^2 (te + ti)^2 + (w.te.ti)^2 / /
|
Spectral density Hessian. Calculate the spectral desity values for the Gj - te double partial derivative of the original model-free formula with the parameters {S2, te} together with diffusion tensor parameters. The model-free Hessian is:
_k_
d2J(w) 4 \ dti (te + ti)^2 - 3(w.te.ti)^2
------- = - (1 - S2) . te > ci . --- . ti . (te + ti) -----------------------------.
dGj.dte 5 /__ dGj ((te + ti)^2 + (w.te.ti)^2)^3
i=-k
|
Spectral density Hessian. Calculate the spectral desity values for the Gj - te double partial derivative of the original model-free formula with the parameters {S2, te} together with diffusion tensor parameters. The model-free Hessian is:
_k_
d2J(w) 2 \ / dti (te + ti)^2 - 3(w.te.ti)^2 dci (te + ti)^2 - (w.te.ti)^2 \
------- = - (1 - S2) > | 2ci . --- . te . ti . (te + ti) ----------------------------- + --- . ti^2 ----------------------------- |.
dGj.dte 5 /__ \ dGj ((te + ti)^2 + (w.te.ti)^2)^3 dGj ((te + ti)^2 + (w.te.ti)^2)^2 /
i=-k
|
Spectral density Hessian. Calculate the spectral desity values for the Oj - Ok double partial derivative of the original model-free formula with no parameters {} together with diffusion tensor parameters. The model-free Hessian is:
_k_
d2J(w) 2 \ d2ci ti
------- = - > ------- . ------------.
dOj.dOk 5 /__ dOj.dOk 1 + (w.ti)^2
i=-k
|
Spectral density Hessian. Calculate the spectral desity values for the Oj - Ok double partial derivative of the original model-free formula with the parameter {S2} together with diffusion tensor parameters. The model-free Hessian is:
_k_
d2J(w) 2 \ d2ci ti
------- = - S2 > ------- . ------------.
dOj.dOk 5 /__ dOj.dOk 1 + (w.ti)^2
i=-k
|
Spectral density Hessian. Calculate the spectral desity values for the Oj - Ok double partial derivative of the original model-free formula with the parameters {S2, te} together with diffusion tensor parameters. The model-free Hessian is:
_k_
d2J(w) 2 \ d2ci / S2 (1 - S2)(te + ti)te \
------- = - > ------- . ti | ------------ + ------------------------- |.
dOj.dOk 5 /__ dOj.dOk \ 1 + (w.ti)^2 (te + ti)^2 + (w.te.ti)^2 /
i=-k
|
Spectral density Hessian. Calculate the spectral desity values for the Oj - S2 double partial derivative of the original model-free formula with the parameter {S2} together with diffusion tensor parameters. The model-free Hessian is:
_k_
d2J(w) 2 \ dci 1
------- = - > --- . ti ------------.
dOj.dS2 5 /__ dOj 1 + (w.ti)^2
i=-k
|
Spectral density Hessian. Calculate the spectral desity values for the Oj - S2 double partial derivative of the original model-free formula with the parameters {S2, te} together with diffusion tensor parameters. The model-free Hessian is:
_k_
d2J(w) 2 \ dci / 1 (te + ti)te \
------- = - > --- . ti | ------------ - ------------------------- |.
dOj.dS2 5 /__ dOj \ 1 + (w.ti)^2 (te + ti)^2 + (w.te.ti)^2 /
i=-k
|
Spectral density Hessian. Calculate the spectral desity values for the Oj - te double partial derivative of the original model-free formula with the parameters {S2, te} together with diffusion tensor parameters. The model-free Hessian is:
_k_
d2J(w) 2 \ dci (te + ti)^2 - (w.te.ti)^2
------- = - (1 - S2) > --- . ti^2 -----------------------------.
dOj.dte 5 /__ dOj ((te + ti)^2 + (w.te.ti)^2)^2
i=-k
|
Spectral density Hessian. Calculate the spectral desity values for the S2 - te double partial derivative of the original model-free formula with the parameters {S2, te} with or without diffusion tensor parameters. The model-free Hessian is:
_k_
d2J(w) 2 \ (te + ti)^2 - (w.te.ti)^2
------- = - - > ci . ti^2 -----------------------------.
dS2.dte 5 /__ ((te + ti)^2 + (w.te.ti)^2)^2
i=-k
|
Spectral density Hessian. Calculate the spectral desity values for the te - te double partial derivative of the original model-free formula with the parameters {S2, te} with or without diffusion tensor parameters. The model-free Hessian is:
_k_
d2J(w) 4 \ (te + ti)^3 + 3.w^2.ti^3.te.(te + ti) - (w.ti)^4.te^3
------ = - - (1 - S2) > ci . ti^2 -----------------------------------------------------.
dte**2 5 /__ ((te + ti)^2 + (w.te.ti)^2)^3
i=-k
|
Spectral density Hessian. Calculate the spectral desity values for the Gj - Gk double partial derivative of the extended model-free formula with the parameters {S2f, S2, ts} together with diffusion tensor parameters. The model-free Hessian is:
_k_
d2J(w) 2 \ / dti dti / 3 - (w.ti)^2 (ts + ti)^3 + 3.w^2.ts^3.ti(ts + ti) - (w.ts)^4.ti^3 \
------- = - > ci | -2 --- . --- | S2.w^2.ti ---------------- + (S2f - S2)ts^2 ---------------------------------------------------- |
dGj.dGk 5 /__ \ dGj dGk \ (1 + (w.ti)^2)^3 ((ts + ti)^2 + (w.ts.ti)^2)^3 /
i=-k
d2ti / 1 - (w.ti)^2 (ts + ti)^2 - (w.ts.ti)^2 \ \
+ ------- | S2 ---------------- + (S2f - S2)ts^2 ----------------------------- | |.
dGj.dGk \ (1 + (w.ti)^2)^2 ((ts + ti)^2 + (w.ts.ti)^2)^2 / /
|
Spectral density Hessian. Calculate the spectral desity values for the Gj - Gk double partial derivative of the extended model-free formula with the parameters {S2f, S2, ts} together with diffusion tensor parameters. The model-free Hessian is:
_k_
d2J(w) 2 \ / dti dti / 3 - (w.ti)^2 (ts + ti)^3 + 3.w^2.ts^3.ti(ts + ti) - (w.ts)^4.ti^3 \
------- = - > | -2ci --- . --- | S2.w^2.ti ---------------- + (S2f - S2)ts^2 ---------------------------------------------------- |
dGj.dGk 5 /__ \ dGj dGk \ (1 + (w.ti)^2)^3 ((ts + ti)^2 + (w.ts.ti)^2)^3 /
i=-k
/ dti dci dti dci d2ti \ / 1 - (w.ti)^2 (ts + ti)^2 - (w.ts.ti)^2 \
+ | --- . --- + --- . --- + ci ------- | | S2 ---------------- + (S2f - S2)ts^2 ----------------------------- |
\ dGj dGk dGk dGj dGj.dGk / \ (1 + (w.ti)^2)^2 ((ts + ti)^2 + (w.ts.ti)^2)^2 /
d2ci / S2 (S2f - S2)(ts + ti)ts \ \
+ ------- . ti | ------------ + ------------------------- | |.
dGj.dGk \ 1 + (w.ti)^2 (ts + ti)^2 + (w.ts.ti)^2 / /
|
Spectral density Hessian. Calculate the spectral desity values for the Gj - Gk double partial derivative of the extended model-free formula with the parameters {S2f, tf, S2, ts} together with diffusion tensor parameters. The model-free Hessian is:
_k_
d2J(w) 2 \ / dti dti / 3 - (w.ti)^2 (tf + ti)^3 + 3.w^2.tf^3.ti(tf + ti) - (w.tf)^4.ti^3
------- = - > ci | -2 --- . --- | S2.w^2.ti ---------------- + (1 - S2f)tf^2 ----------------------------------------------------
dGj.dGk 5 /__ \ dGj dGk \ (1 + (w.ti)^2)^3 ((tf + ti)^2 + (w.tf.ti)^2)^3
i=-k
(ts + ti)^3 + 3.w^2.ts^3.ti(ts + ti) - (w.ts)^4.ti^3 \
+ (S2f - S2)ts^2 ---------------------------------------------------- |
((ts + ti)^2 + (w.ts.ti)^2)^3 /
d2ti / 1 - (w.ti)^2 (tf + ti)^2 - (w.tf.ti)^2 (ts + ti)^2 - (w.ts.ti)^2 \ \
+ ------- | S2 ---------------- + (1 - S2f)tf^2 ----------------------------- + (S2f - S2)ts^2 ----------------------------- | |.
dGj.dGk \ (1 + (w.ti)^2)^2 ((tf + ti)^2 + (w.tf.ti)^2)^2 ((ts + ti)^2 + (w.ts.ti)^2)^2 / /
|
Spectral density Hessian. Calculate the spectral desity values for the Gj - Gk double partial derivative of the extended model-free formula with the parameters {S2f, tf, S2, ts} together with diffusion tensor parameters. The model-free Hessian is:
_k_
d2J(w) 2 \ / dti dti / 3 - (w.ti)^2 (tf + ti)^3 + 3.w^2.tf^3.ti(tf + ti) - (w.tf)^4.ti^3
------- = - > | -2ci --- . --- | S2.w^2.ti ---------------- + (1 - S2f)tf^2 ----------------------------------------------------
dGj.dGk 5 /__ \ dGj dGk \ (1 + (w.ti)^2)^3 ((tf + ti)^2 + (w.tf.ti)^2)^3
i=-k
(ts + ti)^3 + 3.w^2.ts^3.ti(ts + ti) - (w.ts)^4.ti^3 \
+ (S2f - S2)ts^2 ---------------------------------------------------- |
((ts + ti)^2 + (w.ts.ti)^2)^3 /
/ dti dci dti dci d2ti \ / 1 - (w.ti)^2 (tf + ti)^2 - (w.tf.ti)^2
+ | --- . --- + --- . --- + ci ------- | | S2 ---------------- + (1 - S2f)tf^2 -----------------------------
\ dGj dGk dGk dGj dGj.dGk / \ (1 + (w.ti)^2)^2 ((tf + ti)^2 + (w.tf.ti)^2)^2
(ts + ti)^2 - (w.ts.ti)^2 \
+ (S2f - S2)ts^2 ----------------------------- |
((ts + ti)^2 + (w.ts.ti)^2)^2 /
d2ci / S2 (1 - S2f)(tf + ti)tf (S2f - S2)(ts + ti)ts \ \
+ ------- . ti | ------------ + ------------------------- + ------------------------- | |.
dGj.dGk \ 1 + (w.ti)^2 (tf + ti)^2 + (w.tf.ti)^2 (ts + ti)^2 + (w.ts.ti)^2 / /
|
Spectral density Hessian. Calculate the spectral desity values for the Gj - Oj double partial derivative of the extended model-free formula with the parameters {S2f, S2, ts} together with diffusion tensor parameters. The model-free Hessian is:
_k_
d2J(w) 2 \ dci dti / 1 - (w.ti)^2 (ts + ti)^2 - (w.ts.ti)^2 \
------- = - > --- . --- | S2 ---------------- + (S2f - S2)ts^2 ----------------------------- |.
dGj.dOj 5 /__ dOj dGj \ (1 + (w.ti)^2)^2 ((ts + ti)^2 + (w.ts.ti)^2)^2 /
i=-k
|
Spectral density Hessian. Calculate the spectral desity values for the Gj - Oj double partial derivative of the extended model-free formula with the parameters {S2f, S2, ts} together with diffusion tensor parameters. The model-free Hessian is:
_k_
d2J(w) 2 \ / dci dti / 1 - (w.ti)^2 (ts + ti)^2 - (w.ts.ti)^2 \
------- = - > | --- . --- | S2 ---------------- + (S2f - S2)ts^2 ----------------------------- |
dGj.dOj 5 /__ \ dOj dGj \ (1 + (w.ti)^2)^2 ((ts + ti)^2 + (w.ts.ti)^2)^2 /
i=-k
d2ci / S2 (S2f - S2)(ts + ti)ts \ \
+ ------- . ti | ------------ + ------------------------- | |.
dGj.dOj \ 1 + (w.ti)^2 (ts + ti)^2 + (w.ts.ti)^2 / /
|
Spectral density Hessian. Calculate the spectral desity values for the Gj - Oj double partial derivative of the extended model-free formula with the parameters {S2f, tf, S2, ts} together with diffusion tensor parameters. The model-free Hessian is:
_k_
d2J(w) 2 \ dci dti / 1 - (w.ti)^2 (tf + ti)^2 - (w.tf.ti)^2 (ts + ti)^2 - (w.ts.ti)^2 \
------- = - > --- . --- | S2 ---------------- + (1 - S2f)tf^2 ----------------------------- + (S2f - S2)ts^2 ----------------------------- |.
dGj.dOj 5 /__ dOj dGj \ (1 + (w.ti)^2)^2 ((tf + ti)^2 + (w.tf.ti)^2)^2 ((ts + ti)^2 + (w.ts.ti)^2)^2 /
i=-k
|
Spectral density Hessian. Calculate the spectral desity values for the Gj - Oj double partial derivative of the extended model-free formula with the parameters {S2f, tf, S2, ts} together with diffusion tensor parameters. The model-free Hessian is:
_k_
d2J(w) 2 \ / dci dti / 1 - (w.ti)^2 (tf + ti)^2 - (w.tf.ti)^2 (ts + ti)^2 - (w.ts.ti)^2 \
------- = - > | --- . --- | S2 ---------------- + (1 - S2f)tf^2 ----------------------------- + (S2f - S2)ts^2 ----------------------------- |
dGj.dOj 5 /__ \ dOj dGj \ (1 + (w.ti)^2)^2 ((tf + ti)^2 + (w.tf.ti)^2)^2 ((ts + ti)^2 + (w.ts.ti)^2)^2 /
i=-k
d2ci / S2 (1 - S2f)(tf + ti)tf (S2f - S2)(ts + ti)ts \ \
+ ------- . ti | ------------ + ------------------------- + ------------------------- | |.
dGj.dOj \ 1 + (w.ti)^2 (tf + ti)^2 + (w.tf.ti)^2 (ts + ti)^2 + (w.ts.ti)^2 / /
|
Spectral density Hessian. Calculate the spectral desity values for the Gj - S2 double partial derivative of the extended model-free formula with the parameters {S2f, S2, ts} or {S2f, tf, S2, ts} together with diffusion tensor parameters. The model-free Hessian is:
_k_
d2J(w) 2 \ dti / 1 - (w.ti)^2 (ts + ti)^2 - (w.ts.ti)^2 \
------- = - > ci . --- | ---------------- - ts^2 ----------------------------- |.
dGj.dS2 5 /__ dGj \ (1 + (w.ti)^2)^2 ((ts + ti)^2 + (w.ts.ti)^2)^2 /
i=-k
|
Spectral density Hessian. Calculate the spectral desity values for the Gj - S2 double partial derivative of the extended model-free formula with the parameters {S2f, S2, ts} or {S2f, tf, S2, ts} together with diffusion tensor parameters. The model-free Hessian is:
_k_
d2J(w) 2 \ / dti / 1 - (w.ti)^2 (ts + ti)^2 - (w.ts.ti)^2 \
------- = - > | ci . --- | ---------------- - ts^2 ----------------------------- |
dGj.dS2 5 /__ \ dGj \ (1 + (w.ti)^2)^2 ((ts + ti)^2 + (w.ts.ti)^2)^2 /
i=-k
dci / 1 (ts + ti)ts \ \
+ --- . ti | ------------ - ------------------------- | |.
dGj \ 1 + (w.ti)^2 (ts + ti)^2 + (w.ts.ti)^2 / /
|
Spectral density Hessian. Calculate the spectral desity values for the Gj - S2f double partial derivative of the extended model-free formula with the parameters {S2f, S2, ts} together with diffusion tensor parameters. The model-free Hessian is:
_k_
d2J(w) 2 \ dti (ts + ti)^2 - (w.ts.ti)^2
-------- = - > ci . --- ts^2 -----------------------------.
dGj.dS2f 5 /__ dGj ((ts + ti)^2 + (w.ts.ti)^2)^2
i=-k
|
Spectral density Hessian. Calculate the spectral desity values for the Gj - S2f double partial derivative of the extended model-free formula with the parameters {S2f, S2, ts} together with diffusion tensor parameters. The model-free Hessian is:
_k_
d2J(w) 2 \ / dti (ts + ti)^2 - (w.ts.ti)^2 dci (ts + ti)ts \
-------- = - > | ci . --- ts^2 ----------------------------- + --- . ti ------------------------- |.
dGj.dS2f 5 /__ \ dGj ((ts + ti)^2 + (w.ts.ti)^2)^2 dGj (ts + ti)^2 + (w.ts.ti)^2 /
i=-k
|
Spectral density Hessian. Calculate the spectral desity values for the Gj - S2f double partial derivative of the extended model-free formula with the parameters {S2f, tf, S2, ts} together with diffusion tensor parameters. The model-free Hessian is:
_k_
d2J(w) 2 \ dti / (tf + ti)^2 - (w.tf.ti)^2 (ts + ti)^2 - (w.ts.ti)^2 \
-------- = - - > ci . --- | tf^2 ----------------------------- - ts^2 ----------------------------- |.
dGj.dS2f 5 /__ dGj \ ((tf + ti)^2 + (w.tf.ti)^2)^2 ((ts + ti)^2 + (w.ts.ti)^2)^2 /
i=-k
|
Spectral density Hessian. Calculate the spectral desity values for the Gj - S2f double partial derivative of the extended model-free formula with the parameters {S2f, tf, S2, ts} together with diffusion tensor parameters. The model-free Hessian is:
_k_
d2J(w) 2 \ / dti / (tf + ti)^2 - (w.tf.ti)^2 (ts + ti)^2 - (w.ts.ti)^2 \
-------- = - - > | ci . --- | tf^2 ----------------------------- - ts^2 ----------------------------- |
dGj.dS2f 5 /__ \ dGj \ ((tf + ti)^2 + (w.tf.ti)^2)^2 ((ts + ti)^2 + (w.ts.ti)^2)^2 /
i=-k
dci / (tf + ti)tf (ts + ti)ts \ \
+ --- . ti | ------------------------- - ------------------------- | |.
dGj \ (tf + ti)^2 + (w.tf.ti)^2 (ts + ti)^2 + (w.ts.ti)^2 / /
|
Spectral density Hessian. Calculate the spectral desity values for the Gj - tf double partial derivative of the extended model-free formula with the parameters {S2f, tf, S2, ts} together with diffusion tensor parameters. The model-free Hessian is:
_k_
d2J(w) 4 \ dti (tf + ti)^2 - 3(w.tf.ti)^2
------- = - (1 - S2f) . tf > ci . --- . ti . (tf + ti) -----------------------------.
dGj.dtf 5 /__ dGj ((tf + ti)^2 + (w.tf.ti)^2)^3
i=-k
|
Spectral density Hessian. Calculate the spectral desity values for the Gj - tf double partial derivative of the extended model-free formula with the parameters {S2f, tf, S2, ts} together with diffusion tensor parameters. The model-free Hessian is:
_k_
d2J(w) 2 \ / dti (tf + ti)^2 - 3(w.tf.ti)^2 dci (tf + ti)^2 - (w.tf.ti)^2 \
------- = - (1 - S2f) > | 2ci . --- . tf . ti . (tf + ti) ----------------------------- + --- . ti^2 ----------------------------- |.
dGj.dtf 5 /__ \ dGj ((tf + ti)^2 + (w.tf.ti)^2)^3 dGj ((tf + ti)^2 + (w.tf.ti)^2)^2 /
i=-k
|
Spectral density Hessian. Calculate the spectral desity values for the Gj - ts double partial derivative of the extended model-free formula with the parameters {S2f, S2, ts} or {S2f, tf, S2, ts} together with diffusion tensor parameters. The model-free Hessian is:
_k_
d2J(w) 4 \ dti (ts + ti)^2 - 3(w.ts.ti)^2
------- = - (S2f - S2) . ts > ci . --- . ti . (ts + ti) -----------------------------.
dGj.dts 5 /__ dGj ((ts + ti)^2 + (w.ts.ti)^2)^3
i=-k
|
Spectral density Hessian. Calculate the spectral desity values for the Gj - ts double partial derivative of the extended model-free formula with the parameters {S2f, S2, ts} or {S2f, tf, S2, ts} together with diffusion tensor parameters. The model-free Hessian is:
_k_
d2J(w) 2 \ / dti (ts + ti)^2 - 3(w.ts.ti)^2 dci (ts + ti)^2 - (w.ts.ti)^2 \
------- = - (S2f - S2) > | 2ci . --- . ts . ti . (ts + ti) ----------------------------- + --- . ti^2 ----------------------------- |.
dGj.dts 5 /__ \ dGj ((ts + ti)^2 + (w.ts.ti)^2)^3 dGj ((ts + ti)^2 + (w.ts.ti)^2)^2 /
i=-k
|
Spectral density Hessian. Calculate the spectral desity values for the Oj - Ok double partial derivative of the extended model-free formula with the parameters {S2f, S2, ts} together with diffusion tensor parameters. The model-free Hessian is:
_k_
d2J(w) 2 \ d2ci / S2 (S2f - S2)(ts + ti)ts \
------- = - > ------- . ti | ------------ + ------------------------- |.
dOj.dOk 5 /__ dOj.dOk \ 1 + (w.ti)^2 (ts + ti)^2 + (w.ts.ti)^2 /
i=-k
|
Spectral density Hessian. Calculate the spectral desity values for the Oj - Ok double partial derivative of the extended model-free formula with the parameters {S2f, tf, S2, ts} together with diffusion tensor parameters. The model-free Hessian is:
_k_
d2J(w) 2 \ d2ci / S2 (1 - S2f)(tf + ti)tf (S2f - S2)(ts + ti)ts \
------- = - > ------- . ti | ------------ + ------------------------- + ------------------------- |.
dOj.dOk 5 /__ dOj.dOk \ 1 + (w.ti)^2 (tf + ti)^2 + (w.tf.ti)^2 (ts + ti)^2 + (w.ts.ti)^2 /
i=-k
|
Spectral density Hessian. Calculate the spectral desity values for the Oj - S2 double partial derivative of the extended model-free formula with the parameters {S2f, S2, ts} and {S2f, tf, S2, ts} together with diffusion tensor parameters. The model-free Hessian is:
_k_
d2J(w) 2 \ dci / 1 (ts + ti)ts \
------- = - > --- . ti | ------------ - ------------------------- |.
dOj.dS2 5 /__ dOj \ 1 + (w.ti)^2 (ts + ti)^2 + (w.ts.ti)^2 /
i=-k
|
Spectral density Hessian. Calculate the spectral desity values for the Oj - S2f double partial derivative of the extended model-free formula with the parameters {S2f, S2, ts} together with diffusion tensor parameters. The model-free Hessian is:
_k_
d2J(w) 2 \ dci (ts + ti)ts
-------- = - > --- . ti -------------------------.
dOj.dS2f 5 /__ dOj (ts + ti)^2 + (w.ts.ti)^2
i=-k
|
Spectral density Hessian. Calculate the spectral desity values for the Oj - S2f double partial derivative of the extended model-free formula with the parameters {S2f, tf, S2, ts} together with diffusion tensor parameters. The model-free Hessian is:
_k_
d2J(w) 2 \ dci / (tf + ti)tf (ts + ti)ts \
-------- = - - > --- . ti | ------------------------- - ------------------------- |.
dOj.dS2f 5 /__ dOj \ (tf + ti)^2 + (w.tf.ti)^2 (ts + ti)^2 + (w.ts.ti)^2 /
i=-k
|
Spectral density Hessian. Calculate the spectral desity values for the Oj - tf double partial derivative of the extended model-free formula with the parameters {S2f, tf, S2, ts} together with diffusion tensor parameters. The model-free Hessian is:
_k_
d2J(w) 2 \ dci (tf + ti)^2 - (w.tf.ti)^2
------- = - (1 - S2f) > --- . ti^2 -----------------------------.
dOj.dtf 5 /__ dOj ((tf + ti)^2 + (w.tf.ti)^2)^2
i=-k
|
Spectral density Hessian. Calculate the spectral desity values for the Oj - ts double partial derivative of the extended model-free formula with the parameters {S2f, S2, ts} or {S2f, tf, S2, ts} together with diffusion tensor parameters. The model-free Hessian is:
_k_
d2J(w) 2 \ dci (ts + ti)^2 - (w.ts.ti)^2
------- = - (S2f - S2) > --- . ti^2 -----------------------------.
dOj.dts 5 /__ dOj ((ts + ti)^2 + (w.ts.ti)^2)^2
i=-k
|
Spectral density Hessian. Calculate the spectral desity values for the S2 - ts double partial derivative of the extended model-free formula with the parameters {S2f, S2, ts} or {S2f, tf, S2, ts} with or without diffusion tensor parameters. The model-free Hessian is:
_k_
d2J(w) 2 \ (ts + ti)^2 - (w.ts.ti)^2
------- = - - > ci . ti^2 -----------------------------.
dS2.dts 5 /__ ((ts + ti)^2 + (w.ts.ti)^2)^2
i=-k
|
Spectral density Hessian. Calculate the spectral desity values for the S2f - tf double partial derivative of the extended model-free formula with the parameters {S2f, tf, S2, ts} with or without diffusion tensor parameters. The model-free Hessian is:
_k_
d2J(w) 2 \ (tf + ti)^2 - (w.tf.ti)^2
-------- = - - > ci . ti^2 -----------------------------.
dS2f.dtf 5 /__ ((tf + ti)^2 + (w.tf.ti)^2)^2
i=-k
|
Spectral density Hessian. Calculate the spectral desity values for the S2f - ts double partial derivative of the extended model-free formula with the parameters {S2f, S2, ts} or {S2f, tf, S2, ts} with or without diffusion tensor parameters. The model-free Hessian is:
_k_
d2J(w) 2 \ (ts + ti)^2 - (w.ts.ti)^2
-------- = - > ci . ti^2 -----------------------------.
dS2f.dts 5 /__ ((ts + ti)^2 + (w.ts.ti)^2)^2
i=-k
|
Spectral density Hessian. Calculate the spectral desity values for the tf - tf double partial derivative of the extended model-free formula with the parameters {S2f, tf, S2, ts} with or without diffusion tensor parameters. The model-free Hessian is:
_k_
d2J(w) 4 \ (tf + ti)^3 + 3.w^2.ti^3.tf.(tf + ti) - (w.ti)^4.tf^3
------ = - - (1 - S2f) > ci . ti^2 -----------------------------------------------------.
dtf**2 5 /__ ((tf + ti)^2 + (w.tf.ti)^2)^3
i=-k
|
Spectral density Hessian. Calculate the spectral desity values for the ts - ts double partial derivative of the extended model-free formula with the parameters {S2f, S2, ts} or {S2f, tf, S2, ts} with or without diffusion tensor parameters. The model-free Hessian is:
_k_
d2J(w) 4 \ (ts + ti)^3 + 3.w^2.ti^3.ts.(ts + ti) - (w.ti)^4.ts^3
------ = - - (S2f - S2) > ci . ti^2 -----------------------------------------------------.
dts**2 5 /__ ((ts + ti)^2 + (w.ts.ti)^2)^3
i=-k
|
Spectral density Hessian. Calculate the spectral desity values for the Gj - Gk double partial derivative of the extended model-free formula with the parameters {S2f, S2s, ts} together with diffusion tensor parameters. The model-free Hessian is:
_k_
d2J(w) 2 \ / dti dti / 3 - (w.ti)^2 (ts + ti)^3 + 3.w^2.ts^3.ti(ts + ti) - (w.ts)^4.ti^3 \
------- = - > ci | -2 --- . --- | S2f.S2s.w^2.ti ---------------- + S2f(1 - S2s)ts^2 ---------------------------------------------------- |
dGj.dGk 5 /__ \ dGj dGk \ (1 + (w.ti)^2)^3 ((ts + ti)^2 + (w.ts.ti)^2)^3 /
i=-k
d2ti / 1 - (w.ti)^2 (ts + ti)^2 - (w.ts.ti)^2 \ \
+ ------- | S2f.S2s ---------------- + S2f(1 - S2s)ts^2 ----------------------------- | |.
dGj.dGk \ (1 + (w.ti)^2)^2 ((ts + ti)^2 + (w.ts.ti)^2)^2 / /
|
Spectral density Hessian. Calculate the spectral desity values for the Gj - Gk double partial derivative of the extended model-free formula with the parameters {S2f, S2s, ts} together with diffusion tensor parameters. The model-free Hessian is:
_k_
d2J(w) 2 \ / dti dti / 3 - (w.ti)^2 (ts + ti)^3 + 3.w^2.ts^3.ti(ts + ti) - (w.ts)^4.ti^3 \
------- = - > | -2ci --- . --- | S2f.S2s.w^2.ti ---------------- + S2f(1 - S2s)ts^2 ---------------------------------------------------- |
dGj.dGk 5 /__ \ dGj dGk \ (1 + (w.ti)^2)^3 ((ts + ti)^2 + (w.ts.ti)^2)^3 /
i=-k
/ dti dci dti dci d2ti \ / 1 - (w.ti)^2 (ts + ti)^2 - (w.ts.ti)^2 \
+ | --- . --- + --- . --- + ci ------- | | S2f.S2s ---------------- + S2f(1 - S2s)ts^2 ----------------------------- |
\ dGj dGk dGk dGj dGj.dGk / \ (1 + (w.ti)^2)^2 ((ts + ti)^2 + (w.ts.ti)^2)^2 /
d2ci / S2f.S2s S2f(1 - S2s)(ts + ti)ts \ \
+ ------- . ti | ------------ + ------------------------- | |.
dGj.dGk \ 1 + (w.ti)^2 (ts + ti)^2 + (w.ts.ti)^2 / /
|
Spectral density Hessian. Calculate the spectral desity values for the Gj - Gk double partial derivative of the extended model-free formula with the parameters {S2f, tf, S2s, ts} together with diffusion tensor parameters. The model-free Hessian is:
_k_
d2J(w) 2 \ / dti dti / 3 - (w.ti)^2 (tf + ti)^3 + 3.w^2.tf^3.ti(tf + ti) - (w.tf)^4.ti^3
------- = - > ci | -2 --- . --- | S2f.S2s.w^2.ti ---------------- + (1 - S2f)tf^2 ----------------------------------------------------
dGj.dGk 5 /__ \ dGj dGk \ (1 + (w.ti)^2)^3 ((tf + ti)^2 + (w.tf.ti)^2)^3
i=-k
(ts + ti)^3 + 3.w^2.ts^3.ti(ts + ti) - (w.ts)^4.ti^3 \
+ S2f(1 - S2s)ts^2 ---------------------------------------------------- |
((ts + ti)^2 + (w.ts.ti)^2)^3 /
d2ti / 1 - (w.ti)^2 (tf + ti)^2 - (w.tf.ti)^2 (ts + ti)^2 - (w.ts.ti)^2 \
+ ------- | S2f.S2s ---------------- + (1 - S2f)tf^2 ----------------------------- + S2f(1 - S2s)ts^2 ----------------------------- |.
dGj.dGk \ (1 + (w.ti)^2)^2 ((tf + ti)^2 + (w.tf.ti)^2)^2 ((ts + ti)^2 + (w.ts.ti)^2)^2 /
|
Spectral density Hessian. Calculate the spectral desity values for the Gj - Gk double partial derivative of the extended model-free formula with the parameters {S2f, tf, S2s, ts} together with diffusion tensor parameters. The model-free Hessian is:
_k_
d2J(w) 2 \ / dti dti / 3 - (w.ti)^2 (tf + ti)^3 + 3.w^2.tf^3.ti(tf + ti) - (w.tf)^4.ti^3
------- = - > | -2ci --- . --- | S2f.S2s.w^2.ti ---------------- + (1 - S2f)tf^2 ----------------------------------------------------
dGj.dGk 5 /__ \ dGj dGk \ (1 + (w.ti)^2)^3 ((tf + ti)^2 + (w.tf.ti)^2)^3
i=-k
(ts + ti)^3 + 3.w^2.ts^3.ti(ts + ti) - (w.ts)^4.ti^3 \
+ S2f(1 - S2s)ts^2 ---------------------------------------------------- |
((ts + ti)^2 + (w.ts.ti)^2)^3 /
/ dti dci dti dci d2ti \ / 1 - (w.ti)^2 (tf + ti)^2 - (w.tf.ti)^2
+ | --- . --- + --- . --- + ci ------- | | S2f.S2s ---------------- + (1 - S2f)tf^2 -----------------------------
\ dGj dGk dGk dGj dGj.dGk / \ (1 + (w.ti)^2)^2 ((tf + ti)^2 + (w.tf.ti)^2)^2
(ts + ti)^2 - (w.ts.ti)^2 \
+ S2f(1 - S2s)ts^2 ----------------------------- |
((ts + ti)^2 + (w.ts.ti)^2)^2 /
d2ci / S2f.S2s (1 - S2f)(tf + ti)tf S2f(1 - S2s)(ts + ti)ts \ \
+ ------- . ti | ------------ + ------------------------- + ------------------------- | |.
dGj.dGk \ 1 + (w.ti)^2 (tf + ti)^2 + (w.tf.ti)^2 (ts + ti)^2 + (w.ts.ti)^2 / /
|
Spectral density Hessian. Calculate the spectral desity values for the Gj - Oj double partial derivative of the extended model-free formula with the parameters {S2f, S2s, ts} together with diffusion tensor parameters. The model-free Hessian is:
_k_
d2J(w) 2 \ dci dti / 1 - (w.ti)^2 (ts + ti)^2 - (w.ts.ti)^2 \
------- = - > --- . --- | S2f.S2s ---------------- + S2f(1 - S2s)ts^2 ----------------------------- |.
dGj.dOj 5 /__ dOj dGj \ (1 + (w.ti)^2)^2 ((ts + ti)^2 + (w.ts.ti)^2)^2 /
i=-k
|
Spectral density Hessian. Calculate the spectral desity values for the Gj - Oj double partial derivative of the extended model-free formula with the parameters {S2f, S2s, ts} together with diffusion tensor parameters. The model-free Hessian is:
_k_
d2J(w) 2 \ / dci dti / 1 - (w.ti)^2 (ts + ti)^2 - (w.ts.ti)^2 \
------- = - > | --- . --- | S2f.S2s ---------------- + S2f(1 - S2s)ts^2 ----------------------------- |
dGj.dOj 5 /__ \ dOj dGj \ (1 + (w.ti)^2)^2 ((ts + ti)^2 + (w.ts.ti)^2)^2 /
i=-k
d2ci / S2f.S2s S2f(1 - S2s)(ts + ti)ts \ \
+ ------- . ti | ------------ + ------------------------- | |.
dGj.dOj \ 1 + (w.ti)^2 (ts + ti)^2 + (w.ts.ti)^2 / /
|
Spectral density Hessian. Calculate the spectral desity values for the Gj - Oj double partial derivative of the extended model-free formula with the parameters {S2f, tf, S2s, ts} together with diffusion tensor parameters. The model-free Hessian is:
_k_
d2J(w) 2 \ dci dti / 1 - (w.ti)^2 (tf + ti)^2 - (w.tf.ti)^2 (ts + ti)^2 - (w.ts.ti)^2 \
------- = - > --- . --- | S2f.S2s ---------------- + (1 - S2f)tf^2 ----------------------------- + S2f(1 - S2s)ts^2 ----------------------------- |.
dGj.dOj 5 /__ dOj dGj \ (1 + (w.ti)^2)^2 ((tf + ti)^2 + (w.tf.ti)^2)^2 ((ts + ti)^2 + (w.ts.ti)^2)^2 /
i=-k
|
Spectral density Hessian. Calculate the spectral desity values for the Gj - Oj double partial derivative of the extended model-free formula with the parameters {S2f, tf, S2s, ts} together with diffusion tensor parameters. The model-free Hessian is:
_k_
d2J(w) 2 \ / dci dti / 1 - (w.ti)^2 (tf + ti)^2 - (w.tf.ti)^2 (ts + ti)^2 - (w.ts.ti)^2 \
------- = - > | --- . --- | S2f.S2s ---------------- + (1 - S2f)tf^2 ----------------------------- + S2f(1 - S2s)ts^2 ----------------------------- |
dGj.dOj 5 /__ \ dOj dGj \ (1 + (w.ti)^2)^2 ((tf + ti)^2 + (w.tf.ti)^2)^2 ((ts + ti)^2 + (w.ts.ti)^2)^2 /
i=-k
d2ci / S2f.S2s (1 - S2f)(tf + ti)tf S2f(1 - S2s)(ts + ti)ts \ \
+ ------- . ti | ------------ + ------------------------- + ------------------------- | |.
dGj.dOj \ 1 + (w.ti)^2 (tf + ti)^2 + (w.tf.ti)^2 (ts + ti)^2 + (w.ts.ti)^2 / /
|
Spectral density Hessian. Calculate the spectral desity values for the Gj - S2f double partial derivative of the extended model-free formula with the parameters {S2f, S2s, ts} together with diffusion tensor parameters. The model-free Hessian is:
_k_
d2J(w) 2 \ dti / 1 - (w.ti)^2 (ts + ti)^2 - (w.ts.ti)^2 \
-------- = - > ci . --- | S2s ---------------- + (1 - S2s)ts^2 ----------------------------- |.
dGj.dS2f 5 /__ dGj \ (1 + (w.ti)^2)^2 ((ts + ti)^2 + (w.ts.ti)^2)^2 /
i=-k
|
Spectral density Hessian. Calculate the spectral desity values for the Gj - S2f double partial derivative of the extended model-free formula with the parameters {S2f, S2s, ts} together with diffusion tensor parameters. The model-free Hessian is:
_k_
d2J(w) 2 \ / dti / 1 - (w.ti)^2 (ts + ti)^2 - (w.ts.ti)^2 \
-------- = - > | ci . --- | S2s ---------------- + (1 - S2s)ts^2 ----------------------------- |
dGj.dS2f 5 /__ \ dGj \ (1 + (w.ti)^2)^2 ((ts + ti)^2 + (w.ts.ti)^2)^2 /
i=-k
dci / S2s (1 - S2s)(ts + ti)ts \ \
+ --- . ti | ------------ + ------------------------- | |.
dGj \ 1 + (w.ti)^2 (ts + ti)^2 + (w.ts.ti)^2 / /
|
Spectral density Hessian. Calculate the spectral desity values for the Gj - S2f double partial derivative of the extended model-free formula with the parameters {S2f, tf, S2s, ts} together with diffusion tensor parameters. The model-free Hessian is:
_k_
d2J(w) 2 \ dti / 1 - (w.ti)^2 (tf + ti)^2 - (w.tf.ti)^2 (ts + ti)^2 - (w.ts.ti)^2 \
-------- = - > ci . --- | S2s ---------------- - tf^2 ----------------------------- + (1 - S2s)ts^2 ----------------------------- |.
dGj.dS2f 5 /__ dGj \ (1 + (w.ti)^2)^2 ((tf + ti)^2 + (w.tf.ti)^2)^2 ((ts + ti)^2 + (w.ts.ti)^2)^2 /
i=-k
|
Spectral density Hessian. Calculate the spectral desity values for the Gj - S2f double partial derivative of the extended model-free formula with the parameters {S2f, tf, S2s, ts} together with diffusion tensor parameters. The model-free Hessian is:
_k_
d2J(w) 2 \ / dti / 1 - (w.ti)^2 (tf + ti)^2 - (w.tf.ti)^2 (ts + ti)^2 - (w.ts.ti)^2 \
-------- = - > | ci . --- | S2s ---------------- - tf^2 ----------------------------- + (1 - S2s)ts^2 ----------------------------- |
dGj.dS2f 5 /__ \ dGj \ (1 + (w.ti)^2)^2 ((tf + ti)^2 + (w.tf.ti)^2)^2 ((ts + ti)^2 + (w.ts.ti)^2)^2 /
i=-k
dci / S2s (tf + ti)tf (1 - S2s)(ts + ti)ts \ \
+ --- . ti | ------------ - ------------------------- + ------------------------- | |.
dGj \ 1 + (w.ti)^2 (tf + ti)^2 + (w.tf.ti)^2 (ts + ti)^2 + (w.ts.ti)^2 / /
|
Spectral density Hessian. Calculate the spectral desity values for the Gj - S2s double partial derivative of the extended model-free formula with the parameters {S2f, S2s, ts} or {S2f, tf, S2s, ts} together with diffusion tensor parameters. The model-free Hessian is:
_k_
d2J(w) 2 \ dti / 1 - (w.ti)^2 (ts + ti)^2 - (w.ts.ti)^2 \
-------- = - S2f > ci . --- | ---------------- - ts^2 ----------------------------- |.
dGj.dS2s 5 /__ dGj \ (1 + (w.ti)^2)^2 ((ts + ti)^2 + (w.ts.ti)^2)^2 /
i=-k
|
Spectral density Hessian. Calculate the spectral desity values for the Gj - S2s double partial derivative of the extended model-free formula with the parameters {S2f, S2s, ts} or {S2f, tf, S2s, ts} together with diffusion tensor parameters. The model-free Hessian is:
_k_
d2J(w) 2 \ / dti / 1 - (w.ti)^2 (ts + ti)^2 - (w.ts.ti)^2 \
-------- = - S2f > | ci . --- | ---------------- - ts^2 ----------------------------- |
dGj.dS2s 5 /__ \ dGj \ (1 + (w.ti)^2)^2 ((ts + ti)^2 + (w.ts.ti)^2)^2 /
i=-k
dci / 1 (ts + ti)ts \ \
+ --- . ti | ------------ - ------------------------- | |.
dGj \ 1 + (w.ti)^2 (ts + ti)^2 + (w.ts.ti)^2 / /
|
Spectral density Hessian. Calculate the spectral desity values for the Gj - tf double partial derivative of the extended model-free formula with the parameters {S2f, tf, S2s, ts} together with diffusion tensor parameters. The model-free Hessian is:
_k_
d2J(w) 4 \ dti (tf + ti)^2 - 3(w.tf.ti)^2
------- = - (1 - S2f) . tf > ci . --- . ti . (tf + ti) -----------------------------.
dGj.dtf 5 /__ dGj ((tf + ti)^2 + (w.tf.ti)^2)^3
i=-k
|
Spectral density Hessian. Calculate the spectral desity values for the Gj - tf double partial derivative of the extended model-free formula with the parameters {S2f, tf, S2s, ts} together with diffusion tensor parameters. The model-free Hessian is:
_k_
d2J(w) 2 \ / dti (tf + ti)^2 - 3(w.tf.ti)^2 dci (tf + ti)^2 - (w.tf.ti)^2 \
------- = - (1 - S2f) > | 2ci . --- . tf . ti . (tf + ti) ----------------------------- + --- . ti^2 ----------------------------- |.
dGj.dtf 5 /__ \ dGj ((tf + ti)^2 + (w.tf.ti)^2)^3 dGj ((tf + ti)^2 + (w.tf.ti)^2)^2 /
i=-k
|
Spectral density Hessian. Calculate the spectral desity values for the Gj - ts double partial derivative of the extended model-free formula with the parameters {S2f, S2s, ts} or {S2f, tf, S2s, ts} together with diffusion tensor parameters. The model-free Hessian is:
_k_
d2J(w) 4 \ dti (ts + ti)^2 - 3(w.ts.ti)^2
------- = - S2f(1 - S2s) . ts > ci . --- . ti . (ts + ti) -----------------------------.
dGj.dts 5 /__ dGj ((ts + ti)^2 + (w.ts.ti)^2)^3
i=-k
|
Spectral density Hessian. Calculate the spectral desity values for the Gj - ts double partial derivative of the extended model-free formula with the parameters {S2f, S2s, ts} or {S2f, tf, S2s, ts} together with diffusion tensor parameters. The model-free Hessian is:
_k_
d2J(w) 2 \ / dti (ts + ti)^2 - 3(w.ts.ti)^2 dci (ts + ti)^2 - (w.ts.ti)^2 \
------- = - S2f(1 - S2s) > | 2ci . --- . ts . ti . (ts + ti) ----------------------------- + --- . ti^2 ----------------------------- |.
dGj.dts 5 /__ \ dGj ((ts + ti)^2 + (w.ts.ti)^2)^3 dGj ((ts + ti)^2 + (w.ts.ti)^2)^2 /
i=-k
|
Spectral density Hessian. Calculate the spectral desity values for the Oj - Ok double partial derivative of the extended model-free formula with the parameters {S2f, S2s, ts} together with diffusion tensor parameters. The model-free Hessian is:
_k_
d2J(w) 2 \ d2ci / S2f . S2s S2f(1 - S2s)(ts + ti)ts \
------- = - > ------- . ti | ------------ + ------------------------- |.
dOj.dOk 5 /__ dOj.dOk \ 1 + (w.ti)^2 (ts + ti)^2 + (w.ts.ti)^2 /
i=-k
|
Spectral density Hessian. Calculate the spectral desity values for the Oj - Ok double partial derivative of the extended model-free formula with the parameters {S2f, tf, S2s, ts} together with diffusion tensor parameters. The model-free Hessian is:
_k_
d2J(w) 2 \ d2ci / S2f . S2s (1 - S2f)(tf + ti)tf S2f(1 - S2s)(ts + ti)ts \
------- = - > ------- . ti | ------------ + ------------------------- + ------------------------- |.
dOj.dOk 5 /__ dOj.dOk \ 1 + (w.ti)^2 (tf + ti)^2 + (w.tf.ti)^2 (ts + ti)^2 + (w.ts.ti)^2 /
i=-k
|
Spectral density Hessian. Calculate the spectral desity values for the Oj - S2f double partial derivative of the extended model-free formula with the parameters {S2f, S2s, ts} together with diffusion tensor parameters. The model-free Hessian is:
_k_
d2J(w) 2 \ dci / S2s (1 - S2s)(ts + ti)ts \
-------- = - > --- . ti | ------------ + ------------------------- |.
dOj.dS2f 5 /__ dOj \ 1 + (w.ti)^2 (ts + ti)^2 + (w.ts.ti)^2 /
i=-k
|
Spectral density Hessian. Calculate the spectral desity values for the Oj - S2f double partial derivative of the extended model-free formula with the parameters {S2f, tf, S2s, ts} together with diffusion tensor parameters. The model-free Hessian is:
_k_
d2J(w) 2 \ dci / S2s (tf + ti)tf (1 - S2s)(ts + ti)ts \
-------- = - > --- . ti | ------------ - ------------------------- + ------------------------- |.
dOj.dS2f 5 /__ dOj \ 1 + (w.ti)^2 (tf + ti)^2 + (w.tf.ti)^2 (ts + ti)^2 + (w.ts.ti)^2 /
i=-k
|
Spectral density Hessian. Calculate the spectral desity values for the Oj - S2 double partial derivative of the extended model-free formula with the parameters {S2f, S2s, ts} and {S2f, tf, S2s, ts} together with diffusion tensor parameters. The model-free Hessian is:
_k_
d2J(w) 2 \ dci / 1 (ts + ti)ts \
-------- = - S2f > --- . ti | ------------ - ------------------------- |.
dOj.dS2s 5 /__ dOj \ 1 + (w.ti)^2 (ts + ti)^2 + (w.ts.ti)^2 /
i=-k
|
Spectral density Hessian. Calculate the spectral desity values for the Oj - tf double partial derivative of the extended model-free formula with the parameters {S2f, tf, S2s, ts} together with diffusion tensor parameters. The model-free Hessian is:
_k_
d2J(w) 2 \ dci (tf + ti)^2 - (w.tf.ti)^2
------- = - (1 - S2f) > --- . ti^2 -----------------------------.
dOj.dtf 5 /__ dOj ((tf + ti)^2 + (w.tf.ti)^2)^2
i=-k
|
Spectral density Hessian. Calculate the spectral desity values for the Oj - ts double partial derivative of the extended model-free formula with the parameters {S2f, S2s, ts} or {S2f, tf, S2s, ts} together with diffusion tensor parameters. The model-free Hessian is:
_k_
d2J(w) 2 \ dci (ts + ti)^2 - (w.ts.ti)^2
------- = - S2f(1 - S2s) > --- . ti^2 -----------------------------.
dOj.dts 5 /__ dOj ((ts + ti)^2 + (w.ts.ti)^2)^2
i=-k
|
Spectral density Hessian. Calculate the spectral desity values for the S2f - S2s double partial derivative of the extended model-free formula with the parameters {S2f, S2s, ts} or {S2f, tf, S2s, ts} with or without diffusion tensor parameters. The model-free Hessian is:
_k_
d2J(w) 2 \ / 1 (ts + ti).ts \
--------- = - > ci . ti | ------------ - ------------------------- |.
dS2f.dS2s 5 /__ \ 1 + (w.ti)^2 (ts + ti)^2 + (w.ts.ti)^2 /
i=-k
|
Spectral density Hessian. Calculate the spectral desity values for the S2f - tf double partial derivative of the extended model-free formula with the parameters {S2f, tf, S2s, ts} with or without diffusion tensor parameters. The model-free Hessian is:
_k_
d2J(w) 2 \ (tf + ti)^2 - (w.tf.ti)^2
-------- = - - > ci . ti^2 -----------------------------.
dS2f.dtf 5 /__ ((tf + ti)^2 + (w.tf.ti)^2)^2
i=-k
|
Spectral density Hessian. Calculate the spectral desity values for the S2f - ts double partial derivative of the extended model-free formula with the parameters {S2f, S2s, ts} or {S2f, tf, S2s, ts} with or without diffusion tensor parameters. The model-free Hessian is:
_k_
d2J(w) 2 \ (ts + ti)^2 - (w.ts.ti)^2
-------- = - (1 - S2s) > ci . ti^2 -----------------------------.
dS2f.dts 5 /__ ((ts + ti)^2 + (w.ts.ti)^2)^2
i=-k
|
Spectral density Hessian. Calculate the spectral desity values for the S2s - ts double partial derivative of the extended model-free formula with the parameters {S2f, S2s, ts} or {S2f, tf, S2s, ts} with or without diffusion tensor parameters. The model-free Hessian is:
_k_
d2J(w) 2 \ (ts + ti)^2 - (w.ts.ti)^2
-------- = - - S2f > ci . ti^2 -----------------------------.
dS2s.dts 5 /__ ((ts + ti)^2 + (w.ts.ti)^2)^2
i=-k
|
Spectral density Hessian. Calculate the spectral desity values for the tf - tf double partial derivative of the extended model-free formula with the parameters {S2f, tf, S2s, ts} with or without diffusion tensor parameters. The model-free Hessian is:
_k_
d2J(w) 4 \ (tf + ti)^3 + 3.w^2.ti^3.tf.(tf + ti) - (w.ti)^4.tf^3
------ = - - (1 - S2f) > ci . ti^2 -----------------------------------------------------.
dtf**2 5 /__ ((tf + ti)^2 + (w.tf.ti)^2)^3
i=-k
|
Spectral density Hessian. Calculate the spectral desity values for the ts - ts double partial derivative of the extended model-free formula with the parameters {S2f, S2s, ts} or {S2f, tf, S2s, ts} with or without diffusion tensor parameters. The model-free Hessian is:
_k_
d2J(w) 4 \ (ts + ti)^3 + 3.w^2.ti^3.ts.(ts + ti) - (w.ti)^4.ts^3
------ = - - S2f(1 - S2s) > ci . ti^2 -----------------------------------------------------.
dts**2 5 /__ ((ts + ti)^2 + (w.ts.ti)^2)^3
i=-k
|
| Trees | Indices | Help |
|
|---|
| Generated by Epydoc 3.0.1 on Wed Aug 26 11:41:05 2020 | http://epydoc.sourceforge.net |