| Trees | Indices | Help |
|
|---|
|
|
Testing functions.
This file is part of the minfx optimisation library.
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
__package__ =
|
|||
Imports: cos, pi, sin, sqrt, array, float64, more_thuente
|
|||
Test function 1. From More, J. J., and Thuente, D. J. 1994, Line search algorithms with guaranteed sufficient decrease. ACM Trans. Math. Softw. 20, 286-307. The function is:
alpha
phi(alpha) = - ---------------
alpha**2 + beta
|
Derivative of test function 1. From More, J. J., and Thuente, D. J. 1994, Line search algorithms with guaranteed sufficient decrease. ACM Trans. Math. Softw. 20, 286-307. The gradient is:
2*alpha**2 1
phi'(alpha) = -------------------- - ---------------
(alpha**2 + beta)**2 alpha**2 + beta
|
Test function 2. From More, J. J., and Thuente, D. J. 1994, Line search algorithms with guaranteed sufficient decrease. ACM Trans. Math. Softw. 20, 286-307. The function is: phi(alpha) = (alpha + beta)**5 - 2(alpha + beta)**4 |
Derivative of test function 2. From More, J. J., and Thuente, D. J. 1994, Line search algorithms with guaranteed sufficient decrease. ACM Trans. Math. Softw. 20, 286-307. The gradient is: phi'(alpha) = 5(alpha + beta)**4 - 8(alpha + beta)**3 |
Test function 3. From More, J. J., and Thuente, D. J. 1994, Line search algorithms with guaranteed sufficient decrease. ACM Trans. Math. Softw. 20, 286-307. The function is:
2(1 - beta) / l*pi \
phi(alpha) = phi0(alpha) + ----------- . sin | ---- . alpha |
l*pi \ 2 /
where:
/ 1 - alpha, if alpha <= 1 - beta,
|
| alpha - 1, if alpha >= 1 + beta,
phi0(alpha) = <
| 1 1
| ------(alpha - 1)**2 + - beta, if alpha in [1 - beta, 1 + beta].
\ 2*beta 2
|
Derivative of test function 3. From More, J. J., and Thuente, D. J. 1994, Line search algorithms with guaranteed sufficient decrease. ACM Trans. Math. Softw. 20, 286-307. The gradient is:
/ l*pi \
phi(alpha) = phi0'(alpha) + (1 - beta) . cos | ---- . alpha |
\ 2 /
where:
/ -1, if alpha <= 1 - beta,
|
| 1, if alpha >= 1 + beta,
phi0'(alpha) = <
| alpha - 1
| ---------, if alpha in [1 - beta, 1 + beta].
\ beta
|
Test functions 4, 5, and 6. From More, J. J., and Thuente, D. J. 1994, Line search algorithms with guaranteed sufficient decrease. ACM Trans. Math. Softw. 20, 286-307. The function is:
phi(alpha) = gamma(beta1) * sqrt((1 - alpha)**2 + beta2**2)
+ gamma(beta2) * sqrt(alpha**2 + beta1**2)
where:
gamma(beta) = sqrt(1 + beta**2) - beta
|
Test functions 4, 5, and 6. From More, J. J., and Thuente, D. J. 1994, Line search algorithms with guaranteed sufficient decrease. ACM Trans. Math. Softw. 20, 286-307. The function is:
(1 - alpha)
phi'(alpha) = - gamma(beta1) * -------------------------------
sqrt((1 - alpha)**2 + beta2**2)
a
+ gamma(beta2) * -------------------------
sqrt(alpha**2 + beta1**2)
where:
gamma(beta) = sqrt(1 + beta**2) - beta
|
| Trees | Indices | Help |
|
|---|
| Generated by Epydoc 3.0.1 on Wed Aug 26 11:41:05 2020 | http://epydoc.sourceforge.net |