Trees | Indices | Help |
|
---|
|
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
Imports: dot, cos, sin
|
Function for calculating the dot product XH . Dpar. Delta is the dot product between the unit bond vector and the unit vector along Dpar. The equation is: delta = XH . Dpar The unit Dpar vector is: | sin(theta) * cos(phi) | Dpar = | sin(theta) * sin(phi) | | cos(theta) | |
Function for calculating the partial derivatives of the dot product XH . Dpar. The theta partial derivative of the unit Dpar vector is: dDpar | cos(theta) * cos(phi) | ------ = | cos(theta) * sin(phi) | dtheta | -sin(theta) | The phi partial derivative of the unit Dpar vector is: dDpar | -sin(theta) * sin(phi) | ----- = | sin(theta) * cos(phi) | dphi | 0 | Psi is the diffusion parameter set {Dper, Dpar, theta, phi} |
Function for calculating the second partial derivatives of the dot product XH . Dpar. The theta-theta second partial derivative of the unit Dpar vector is: d2Dpar | -sin(theta) * cos(phi) | ------- = | -sin(theta) * sin(phi) | dtheta2 | -cos(theta) | The theta-phi second partial derivative of the unit Dpar vector is: d2Dpar | -cos(theta) * sin(phi) | ----------- = | cos(theta) * cos(phi) | dtheta.dphi | 0 | The phi-phi second partial derivative of the unit Dpar vector is: dDpar | -sin(theta) * cos(phi) | ----- = | -sin(theta) * sin(phi) | dphi2 | 0 | Psi is the diffusion parameter set {Dper, Dpar, theta, phi} |
Function for calculating delta_alpha, delta_beta, and delta_gamma. Deltas ~~~~~~ delta_alpha is the dot product between the unit bond vector and the unit vector along Dx. The equation is: delta_alpha = XH . Dx delta_beta is the dot product between the unit bond vector and the unit vector along Dy. The equation is: delta_beta = XH . Dy delta_gamma is the dot product between the unit bond vector and the unit vector along Dz. The equation is: delta_gamma = XH . Dz Unit vectors ~~~~~~~~~~~~ The unit Dx vector is: | -sin(alpha) * sin(gamma) + cos(alpha) * cos(beta) * cos(gamma) | Dx = | -sin(alpha) * cos(gamma) - cos(alpha) * cos(beta) * sin(gamma) | | cos(alpha) * sin(beta) | The unit Dy vector is: | cos(alpha) * sin(gamma) + sin(alpha) * cos(beta) * cos(gamma) | Dy = | cos(alpha) * cos(gamma) - sin(alpha) * cos(beta) * sin(gamma) | | sin(alpha) * sin(beta) | The unit Dz vector is: | -sin(beta) * cos(gamma) | Dz = | sin(beta) * sin(gamma) | | cos(beta) | |
Function for calculating the partial derivative of delta_alpha, delta_beta, and delta_gamma. Dx gradient ~~~~~~~~~~~ The alpha partial derivative of the unit Dx vector is: dDx | -cos(alpha) * sin(gamma) - sin(alpha) * cos(beta) * cos(gamma) | ------ = | -cos(alpha) * cos(gamma) + sin(alpha) * cos(beta) * sin(gamma) | dalpha | -sin(alpha) * sin(beta) | The beta partial derivative of the unit Dx vector is: dDx | -cos(alpha) * sin(beta) * cos(gamma) | ----- = | cos(alpha) * sin(beta) * sin(gamma) | dbeta | cos(alpha) * cos(beta) | The gamma partial derivative of the unit Dx vector is: dDx | -sin(alpha) * cos(gamma) - cos(alpha) * cos(beta) * sin(gamma) | ------ = | sin(alpha) * sin(gamma) - cos(alpha) * cos(beta) * cos(gamma) | dgamma | 0 | Dy gradient ~~~~~~~~~~~ The alpha partial derivative of the unit Dy vector is: dDy | -sin(alpha) * sin(gamma) + cos(alpha) * cos(beta) * cos(gamma) | ------ = | -sin(alpha) * cos(gamma) - cos(alpha) * cos(beta) * sin(gamma) | dalpha | cos(alpha) * sin(beta) | The beta partial derivative of the unit Dy vector is: dDy | -sin(alpha) * sin(beta) * cos(gamma) | ----- = | sin(alpha) * sin(beta) * sin(gamma) | dbeta | sin(alpha) * cos(beta) | The gamma partial derivative of the unit Dy vector is: dDy | cos(alpha) * cos(gamma) - sin(alpha) * cos(beta) * sin(gamma) | ------ = | -cos(alpha) * sin(gamma) - sin(alpha) * cos(beta) * cos(gamma) | dgamma | 0 | Dz gradient ~~~~~~~~~~~ The alpha partial derivative of the unit Dz vector is: dDz | 0 | ------ = | 0 | dalpha | 0 | The beta partial derivative of the unit Dz vector is: dDz | -cos(beta) * cos(gamma) | ----- = | cos(beta) * sin(gamma) | dbeta | -sin(beta) | The gamma partial derivative of the unit Dz vector is: dDz | sin(beta) * sin(gamma) | ------ = | sin(beta) * cos(gamma) | dgamma | 0 | |
Function calculating the second partial derivatives of delta_alpha, delta_beta, delta_gamma. Dx Hessian ~~~~~~~~~~ The alpha-alpha second partial derivative of the unit Dx vector is: d2Dx | sin(alpha) * sin(gamma) - cos(alpha) * cos(beta) * cos(gamma) | ------- = | sin(alpha) * cos(gamma) + cos(alpha) * cos(beta) * sin(gamma) | dalpha2 | -cos(alpha) * sin(beta) | The alpha-beta second partial derivative of the unit Dx vector is: d2Dx | sin(alpha) * sin(beta) * cos(gamma) | ------------ = | -sin(alpha) * sin(beta) * sin(gamma) | dalpha.dbeta | -sin(alpha) * cos(beta) | The alpha-gamma second partial derivative of the unit Dx vector is: d2Dx | -cos(alpha) * cos(gamma) + sin(alpha) * cos(beta) * sin(gamma) | ------------- = | cos(alpha) * sin(gamma) + sin(alpha) * cos(beta) * cos(gamma) | dalpha.dgamma | 0 | The beta-beta second partial derivative of the unit Dx vector is: d2Dx | -cos(alpha) * cos(beta) * cos(gamma) | ------ = | cos(alpha) * cos(beta) * sin(gamma) | dbeta2 | -cos(alpha) * sin(beta) | The beta-gamma second partial derivative of the unit Dx vector is: d2Dx | cos(alpha) * sin(beta) * sin(gamma) | ------------ = | cos(alpha) * sin(beta) * cos(gamma) | dbeta.dgamma | 0 | The gamma-gamma second partial derivative of the unit Dx vector is: d2Dx | sin(alpha) * sin(gamma) - cos(alpha) * cos(beta) * cos(gamma) | ------- = | sin(alpha) * cos(gamma) + cos(alpha) * cos(beta) * sin(gamma) | dgamma2 | 0 | Dy Hessian ~~~~~~~~~~ The alpha-alpha second partial derivative of the unit Dy vector is: d2Dy | -cos(alpha) * sin(gamma) - sin(alpha) * cos(beta) * cos(gamma) | ------- = | -cos(alpha) * cos(gamma) + sin(alpha) * cos(beta) * sin(gamma) | dalpha2 | -sin(alpha) * sin(beta) | The alpha-beta second partial derivative of the unit Dy vector is: d2Dy | -cos(alpha) * sin(beta) * cos(gamma) | ------------ = | cos(alpha) * sin(beta) * sin(gamma) | dalpha.dbeta | cos(alpha) * cos(beta) | The alpha-gamma second partial derivative of the unit Dy vector is: d2Dy | -sin(alpha) * cos(gamma) - cos(alpha) * cos(beta) * sin(gamma) | ------------- = | sin(alpha) * sin(gamma) - cos(alpha) * cos(beta) * cos(gamma) | dalpha.dgamma | 0 | The beta-beta second partial derivative of the unit Dy vector is: d2Dy | -sin(alpha) * cos(beta) * cos(gamma) | ------ = | sin(alpha) * cos(beta) * sin(gamma) | dbeta2 | -sin(alpha) * sin(beta) | The beta-gamma second partial derivative of the unit Dy vector is: d2Dy | sin(alpha) * sin(beta) * sin(gamma) | ------------ = | sin(alpha) * sin(beta) * cos(gamma) | dbeta.dgamma | 0 | The gamma-gamma second partial derivative of the unit Dy vector is: d2Dy | -cos(alpha) * sin(gamma) - sin(alpha) * cos(beta) * cos(gamma) | ------- = | -cos(alpha) * cos(gamma) + sin(alpha) * cos(beta) * sin(gamma) | dgamma2 | 0 | Dz Hessian ~~~~~~~~~~ The alpha-alpha second partial derivative of the unit Dz vector is: d2Dz | 0 | ------- = | 0 | dalpha2 | 0 | The alpha-beta second partial derivative of the unit Dz vector is: d2Dz | 0 | ------------ = | 0 | dalpha.dbeta | 0 | The alpha-gamma second partial derivative of the unit Dz vector is: d2Dz | 0 | ------------- = | 0 | dalpha.dgamma | 0 | The beta-beta second partial derivative of the unit Dz vector is: d2Dz | sin(beta) * cos(gamma) | ------ = | -sin(beta) * sin(gamma) | dbeta2 | -cos(beta) | The beta-gamma second partial derivative of the unit Dz vector is: d2Dz | cos(beta) * sin(gamma) | ------------ = | cos(beta) * cos(gamma) | dbeta.dgamma | 0 | The gamma-gamma second partial derivative of the unit Dz vector is: d2Dz | sin(beta) * cos(gamma) | ------- = | -sin(beta) * sin(gamma) | dgamma2 | 0 | |
Trees | Indices | Help |
|
---|
Generated by Epydoc 3.0.1 on Tue Nov 25 10:46:27 2014 | http://epydoc.sourceforge.net |