Trees | Indices | Help |
|
---|
|
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
Imports: sqrt, outerproduct
|
Weight equations for isotropic diffusion. c0 = 1 |
Weight equations for axially symmetric diffusion. The equations are: c0 = 1/4 (3delta**2 - 1)**2 c1 = 3delta**2 (1 - delta**2) c2 = 3/4 (1 - delta**2)**2 where delta is the dot product of the unit bond vector and the unit vector along Dpar. |
Weight gradient for axially symmetric diffusion. The equations are: dc0 ddelta ----- = 3delta (3delta**2 - 1) ------ dpsii dpsii dc1 ddelta ----- = 6delta (1 - 2delta**2) ------ dpsii dpsii dc2 ddelta ----- = 3delta (delta**2 - 1) ------ dpsii dpsii where psi = {theta, phi} |
Weight Hessian for axially symmetric diffusion. The equations are: d2c0 / ddelta ddelta d2delta \ ----------- = 3 |(9delta**2 - 1) ------ . ------ + delta (3delta**2 - 1) ----------- | dpsii.dpsij \ dpsii dpsij dpsii.dpsij / d2c1 / ddelta ddelta d2delta \ ----------- = 6 |(1 - 6delta**2) ------ . ------ + delta (1 - 2delta**2) ----------- | dpsii.dpsij \ dpsii dpsij dpsii.dpsij / d2c2 / ddelta ddelta d2delta \ ----------- = 3 |(3delta**2 - 1) ------ . ------ + delta (delta**2 - 1) ----------- | dpsii.dpsij \ dpsii dpsij dpsii.dpsij / where psi = {theta, phi} |
Weight equations for anisotropic diffusion. In the following equations, the following short-hand notation will be used: da = delta_alpha db = delta_beta dg = delta_gamma The equations are: c-2 = 3da**2.db**2 c-1 = 3da**2.dg**2 c0 = 1/4 (3(da**4 + db**4 + dg**4) - 1 - e) c1 = 3db**2.dg**2 c2 = 1/4 (3(da**4 + db**4 + dg**4) - 1 + e) Da - Dr Da + Dr 2Da e = ------- (da**4 + 2db**2.dg**2) + ------- (db**4 + 2da**2.dg**2) - --- (dg**4 + 2da**2.db**2) mu mu mu where: __________________ mu = V Da**2 + Dr**2 / 3 delta_alpha is the dot product of the unit bond vector and the unit vector along Dx. delta_beta is the dot product of the unit bond vector and the unit vector along Dy. delta_gamma is the dot product of the unit bond vector and the unit vector along Dz. alpha (in delta_alpha) is the directional cosine along Dx. beta (in delta_beta) is the directional cosine along Dy. gamma (in delta_gamma) is the directional cosine along Dz. |
Weight gradient for anisotropic diffusion. psii partial derivatives ~~~~~~~~~~~~~~~~~~~~~~~~ dc-2 / dda ddb \ ----- = 6da.db | db ----- + da ----- | dpsii \ dpsii dpsii / dc-1 / dda ddg \ ----- = 6da.dg | dg ----- + da ----- | dpsii \ dpsii dpsii / dc0 / dda ddb ddg \ de ----- = 3 | da**3 ----- + db**3 ----- + dg**3 ----- | - ----- dpsii \ dpsii dpsii dpsii / dpsii dc1 / ddb ddg \ ----- = 6db.dg | dg ----- + db ----- | dpsii \ dpsii dpsii / dc2 / dda ddb ddg \ de ----- = 3 | da**3 ----- + db**3 ----- + dg**3 ----- | + ----- dpsii \ dpsii dpsii dpsii / dpsii de Da - Dr / dda / ddb ddg \ \ ----- = ------- | da**3 ----- + db.dg | dg ----- + db ----- | | dpsii mu \ dpsii \ dpsii dpsii / / Da + Dr / ddb / dda ddg \ \ + ------- | db**3 ----- + da.dg | dg ----- + da ----- | | mu \ dpsii \ dpsii dpsii / / 2Da / ddg / dda ddb \ \ - --- | dg**3 ----- + da.db | db ----- + da ----- | | mu \ dpsii \ dpsii dpsii / / where psi = {alpha, beta, gamma}. Da partial derivatives ~~~~~~~~~~~~~~~~~~~~~~ dc-2 ---- = 0 dDa dc-1 ---- = 0 dDa dc0 1 de --- = - - --- dDa 4 dDa dc1 --- = 0 dDa dc2 1 de --- = - --- dDa 4 dDa de 1 / (3Da + Dr)Dr (3Da - Dr)Dr 2Dr**2 \ --- = - | ------------ (da**4 + 2db**2.dg**2) - ------------ (db**4 + 2da**2.dg**2) - ------ (dg**4 + 2da**2.db**2) | dDa 3 \ mu**3 mu**3 mu**3 / Dr partial derivatives ~~~~~~~~~~~~~~~~~~~~~~ dc-2 ---- = 0 dDr dc-1 ---- = 0 dDr dc0 1 de --- = - - --- dDr 4 dDr dc1 --- = 0 dDr dc2 1 de --- = - --- dDr 4 dDr de 1 / (3Da + Dr)Da (3Da - Dr)Da 2Da.Dr \ --- = - - | ------------ (da**4 + 2db**2.dg**2) - ------------ (db**4 + 2da**2.dg**2) - ------ (dg**4 + 2da**2.db**2) | dDr 3 \ mu**3 mu**3 mu**3 / tm partial derivatives ~~~~~~~~~~~~~~~~~~~~~~ dc-2 ---- = 0 dtm dc-1 ---- = 0 dtm dc0 --- = 0 dtm dc1 --- = 0 dtm dc2 --- = 0 dtm |
Weight Hessian for anisotropic diffusion. psii-psij partial derivatives ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ d2c-2 / / dda dda d2da \ / dda ddb ddb dda \ / ddb ddb d2db \ \ ----------- = 6 | db**2 | ----- . ----- + da ----------- | + 2da.db | ----- . ----- + ----- . ----- | + da**2 | ----- . ----- + db ----------- | | dpsii.dpsij \ \ dpsii dpsij dpsii.dpsij / \ dpsii dpsij dpsii dpsij / \ dpsii dpsij dpsii.dpsij / / d2c-1 / / dda dda d2da \ / dda ddg ddg dda \ / ddg ddg d2dg \ \ ----------- = 6 | dg**2 | ----- . ----- + da ----------- | + 2da.dg | ----- . ----- + ----- . ----- | + da**2 | ----- . ----- + dg ----------- | | dpsii.dpsij \ \ dpsii dpsij dpsii.dpsij / \ dpsii dpsij dpsii dpsij / \ dpsii dpsij dpsii.dpsij / / d2c0 / / dda dda d2da \ / ddb ddb d2db \ / ddg ddg d2dg \ \ d2e ----------- = 3 | da**2 | ----- . ----- + da ----------- | + db**2 | ----- . ----- + db ----------- | + dg**2 | ----- . ----- + dg ----------- | | - ----------- dpsii.dpsij \ \ dpsii dpsij dpsii.dpsij / \ dpsii dpsij dpsii.dpsij / \ dpsii dpsij dpsii.dpsij / / dpsii.dpsij d2c1 / / ddb ddb d2db \ / ddb ddg ddg ddb \ / ddg ddg d2dg \ \ ----------- = 6 | dg**2 | ----- . ----- + db ----------- | + 2db.dg | ----- . ----- + ----- . ----- | + db**2 | ----- . ----- + dg ----------- | | dpsii.dpsij \ \ dpsii dpsij dpsii.dpsij / \ dpsii dpsij dpsii dpsij / \ dpsii dpsij dpsii.dpsij / / d2c2 / / dda dda d2da \ / ddb ddb d2db \ / ddg ddg d2dg \ \ d2e ----------- = 3 | da**2 | ----- . ----- + da ----------- | + db**2 | ----- . ----- + db ----------- | + dg**2 | ----- . ----- + dg ----------- | | + ----------- dpsii.dpsij \ \ dpsii dpsij dpsii.dpsij / \ dpsii dpsij dpsii.dpsij / \ dpsii dpsij dpsii.dpsij / / dpsii.dpsij d2e Da - Dr / / dda dda d2da \ ----------- = ------- | da**2 | 3 ----- . ----- + da ----------- | dpsii.dpsij mu \ \ dpsii dpsij dpsii.dpsij / / ddb ddb d2db \ / ddb ddg ddg ddb \ / ddg ddg d2dg \ \ + dg**2 | ----- . ----- + db ----------- | + 2db.dg | ----- . ----- + ----- . ----- | + db**2 | ----- . ----- + dg ----------- | | \ dpsii dpsij dpsii.dpsij / \ dpsii dpsij dpsii dpsij / \ dpsii dpsij dpsii.dpsij / / Da + Dr / / ddb ddb d2db \ + ------- | db**2 | 3 ----- . ----- + db ----------- | mu \ \ dpsii dpsij dpsii.dpsij / / dda dda d2da \ / dda ddg ddg dda \ / ddg ddg d2dg \ \ + dg**2 | ----- . ----- + da ----------- | + 2da.dg | ----- . ----- + ----- . ----- | + da**2 | ----- . ----- + dg ----------- | | \ dpsii dpsij dpsii.dpsij / \ dpsii dpsij dpsii dpsij / \ dpsii dpsij dpsii.dpsij / / 2Da / / ddg ddg d2dg \ - --- | dg**2 | 3 ----- . ----- + da ----------- | mu \ \ dpsii dpsij dpsii.dpsij / / dda dda d2da \ / dda ddb ddb dda \ / ddb ddb d2db \ \ + db**2 | ----- . ----- + da ----------- | + 2da.db | ----- . ----- + ----- . ----- | + da**2 | ----- . ----- + db ----------- | | \ dpsii dpsij dpsii.dpsij / \ dpsii dpsij dpsii dpsij / \ dpsii dpsij dpsii.dpsij / / psii-Da partial derivatives ~~~~~~~~~~~~~~~~~~~~~~~~~~~ d2c-2 --------- = 0 dpsii.dDa d2c-1 --------- = 0 dpsii.dDa d2c0 d2e --------- = - --------- dpsii.dDa dpsii.dDa d2c1 --------- = 0 dpsii.dDa d2c2 d2e --------- = --------- dpsii.dDa dpsii.dDa d2e 1 (3Da + Dr)Dr / dda / ddb ddg \ \ --------- = - ------------ | da**3 ----- + db.dg | dg ----- + db ----- | | dpsii.dDa 3 mu**3 \ dpsii \ dpsii dpsii / / 1 (3Da - Dr)Dr / ddb / dda ddg \ \ - - ------------ | db**3 ----- + da.dg | dg ----- + da ----- | | 3 mu**3 \ dpsii \ dpsii dpsii / / 2 Dr**2 / ddg / dda ddb \ \ - - ----- | dg**3 ----- + da.db | db ----- + da ----- | | 3 mu**3 \ dpsii \ dpsii dpsii / / psii-Dr partial derivatives ~~~~~~~~~~~~~~~~~~~~~~~~~~~ d2c-2 --------- = 0 dpsii.dDr d2c-1 --------- = 0 dpsii.dDr d2c0 d2e --------- = - --------- dpsii.dDr dpsii.dDr d2c1 --------- = 0 dpsii.dDr d2c2 d2e --------- = --------- dpsii.dDr dpsii.dDr d2e 1 (3Da + Dr)Da / dda / ddb ddg \ \ --------- = - - ------------ | da**3 ----- + db.dg | dg ----- + db ----- | | dpsii.dDr 3 mu**3 \ dpsii \ dpsii dpsii / / 1 (3Da - Dr)Da / ddb / dda ddg \ \ - - ------------ | db**3 ----- + da.dg | dg ----- + da ----- | | 3 mu**3 \ dpsii \ dpsii dpsii / / 2 Dr**2 / ddg / dda ddb \ \ - - ----- | dg**3 ----- + da.db | db ----- + da ----- | | 3 mu**3 \ dpsii \ dpsii dpsii / / psii-tm partial derivatives ~~~~~~~~~~~~~~~~~~~~~~~~~~~ d2c-2 --------- = 0 dpsii.dtm d2c-1 --------- = 0 dpsii.dtm d2c0 --------- = 0 dpsii.dtm d2c1 --------- = 0 dpsii.dtm d2c2 --------- = 0 dpsii.dtm Da-Da partial derivatives ~~~~~~~~~~~~~~~~~~~~~~~~~ d2c-2 ------ = 0 dDa**2 d2c-1 ------ = 0 dDa**2 d2c0 1 d2e ------ = - - ------ dDa**2 4 dDa**2 d2c1 ------ = 0 dDa**2 d2c2 1 d2e ------ = - ------ dDa**2 4 dDa**2 d2e 1 / (6Da**2 + 3Da.Dr - Dr**2)Dr (6Da**2 - 3Da.Dr - Dr**2)Dr 6Da.Dr**2 \ ------ = - - | --------------------------- (da**4 + 2db**2.dg**2) - --------------------------- (db**4 + 2da**2.dg**2) - --------- (dg**4 + 2da**2.db**2) | dDa**2 3 \ mu**5 mu**5 mu**5 / Da-Dr partial derivatives ~~~~~~~~~~~~~~~~~~~~~~~~~ d2c-2 ------- = 0 dDa.dDr d2c-1 ------- = 0 dDa.dDr d2c0 1 d2e ------- = - - ------- dDa.dDr 4 dDa.dDr d2c1 ------- = 0 dDa.dDr d2c2 1 d2e ------- = - ------- dDa.dDr 4 dDa.dDr d2e 1 / 9Da**3 + 6Da**2.Dr - 6Da.Dr**2 - Dr**3 9Da**3 - 6Da**2.Dr - 6Da.Dr**2 + Dr**3 ------- = - | -------------------------------------- (da**4 + 2db**2.dg**2) - -------------------------------------- (db**4 + 2da**2.dg**2) dDa.dDr 9 \ mu**5 mu**5 2(Da**2 - Dr**2)Dr \ - ------------------ (dg**4 + 2da**2.db**2) | mu**5 / Da-tm partial derivatives ~~~~~~~~~~~~~~~~~~~~~~~~~ d2c-2 ------- = 0 dDa.dtm d2c-1 ------- = 0 dDa.dtm d2c0 ------- = 0 dDa.dtm d2c1 ------- = 0 dDa.dtm d2c2 ------- = 0 dDa.dtm Dr-Dr partial derivatives ~~~~~~~~~~~~~~~~~~~~~~~~~ d2c-2 ------ = 0 dDr**2 d2c-1 ------ = 0 dDr**2 d2c0 1 d2e ------ = - - ------ dDr**2 4 dDr**2 d2c1 ------ = 0 dDr**2 d2c2 1 d2e ------ = - ------ dDr**2 4 dDr**2 d2e 1 / (3Da**2 - 9Da.Dr - 2Dr**2)Da (3Da**2 + 9Da.Dr - 2Dr**2)Da 2(3Da**2 - 2Dr**2)Da ------ = - - | ---------------------------- (da**4 + 2db**2.dg**2) + ---------------------------- (db**4 + 2da**2.dg**2) - -------------------- (dg**4 + 2da**2.db**2) | dDr**2 9 \ mu**5 mu**5 mu**5 / Dr-tm partial derivatives ~~~~~~~~~~~~~~~~~~~~~~~~~ d2c-2 ------- = 0 dDr.dtm d2c-1 ------- = 0 dDr.dtm d2c0 ------- = 0 dDr.dtm d2c1 ------- = 0 dDr.dtm d2c2 ------- = 0 dDr.dtm |
Trees | Indices | Help |
|
---|
Generated by Epydoc 3.0.1 on Tue Nov 25 10:46:27 2014 | http://epydoc.sourceforge.net |