Trees | Indices | Help |
|
---|
|
Module containing functions for the handling of alignment tensors.
|
|||
bool |
|
||
bool |
|
||
numpy array or float |
|
||
|
|||
|
|||
float |
|
||
|
|||
|
|||
|
|||
|
|||
float |
|
||
int |
|
||
AlignTensorData instance |
|
||
|
|||
|
|||
float |
|
||
|
|||
|
|||
int |
|
||
|
|||
float |
|
||
str |
|
||
data.align_tensor.AlignTensorData instance |
|
||
str |
|
||
|
|||
|
|||
|
|
|||
__default_value_prompt_doc__ =
|
|||
__return_data_name_prompt_doc__ =
|
|||
__set_prompt_doc__ =
|
|||
__package__ =
|
Imports: deepcopy, pi, sqrt, arccos, dot, float64, linalg, zeros, norm, search, sys, wrap_angles, AlignTensorList, pipes, g1H, h_bar, kB, mu0, return_gyromagnetic_ratio, RelaxError, RelaxNoTensorError, RelaxStrError, RelaxTensorError, RelaxUnknownParamCombError, RelaxUnknownParamError
|
Function for determining if alignment data exists in the current data pipe.
|
Determine if all alignment tensors are fixed.
|
Convert the alignment tensor into the magnetic susceptibility (chi) tensor. A can be either the full tensor (3D or 5D), a component Aij of the tensor, Aa, or Ar, anything that can be multiplied by the constants to convert from one to the other.
|
Function for copying alignment tensor data from one data pipe to another.
|
Return the default values for the alignment tensor parameters.
|
Function for deleting alignment tensor data.
|
Function for displaying the alignment tensor.
|
Fix the alignment tensor during optimisation.
|
Wrap the Euler angles and remove the glide reflection and translational symmetries. Wrap the angles such that: 0 <= alpha <= 2pi, 0 <= beta <= pi, 0 <= gamma <= 2pi. For the simulated values, the angles are wrapped as: alpha - pi <= alpha_sim <= alpha + pi beta - pi/2 <= beta_sim <= beta + pi/2 gamma - pi <= gamma_sim <= gamma + pi
|
Calculate the generalized degree of order (GDO) for the given alignment tensor.
|
Function for returning the index corresponding to the 'tensor' argument.
|
Function for returning the AlignTensorData instance corresponding to the 'tensor' argument.
|
Function for initialising the alignment tensor.
|
Function for calculating the kappa constant. The kappa constant is: kappa = -3/(8pi^2).gI.gS.mu0.h_bar, where gI and gS are the gyromagnetic ratios of the I and S spins, mu0 is the permeability of free space, and h_bar is Planck's constant divided by 2pi.
|
Function for creating labels, tick locations, and tick values for an OpenDX map.
|
Function for calculating the 5D angles between the alignment tensors. The basis set used for the 5D vector construction changes the angles calculated.
|
Count the number of tensors.
|
Specify which tensor is a reduction of which other tensor.
|
Function for returning the factor of conversion between different parameter units.
|
Return the parameter name.
|
Return the tensor container for the given index, skipping fixed tensors if required.
|
Function for returning a string representing the parameters units.
|
Set the tensor.
|
Set the domain label for the given tensor.
|
Function for calculating the singular values of all the loaded tensors. The matrix on which SVD will be performed is: | Sxx1 Syy1 Sxy1 Sxz1 Syz1 | | Sxx2 Syy2 Sxy2 Sxz2 Syz2 | | Sxx3 Syy3 Sxy3 Sxz3 Syz3 | | . . . . . | | . . . . . | | . . . . . | | SxxN SyyN SxyN SxzN SyzN | This is the default unitary basis set (selected when basis_set is 0). Alternatively a geometric basis set consisting of the stretching and skewing parameters Szz and Sxx-yy respectively replacing Sxx and Syy can be chosen by setting basis_set to 1. The matrix in this case is: | Szz1 Sxxyy1 Sxy1 Sxz1 Syz1 | | Szz2 Sxxyy2 Sxy2 Sxz2 Syz2 | | Szz3 Sxxyy3 Sxy3 Sxz3 Syz3 | | . . . . . | | . . . . . | | . . . . . | | SzzN SxxyyN SxyN SxzN SyzN | The relationships between the geometric and unitary basis sets are: Szz = - Sxx - Syy, Sxxyy = Sxx - Syy, The SVD values and condition number are dependendent upon the basis set chosen.
|
|
__default_value_prompt_doc__
|
__return_data_name_prompt_doc__
|
__set_prompt_doc__
|
Trees | Indices | Help |
|
---|
Generated by Epydoc 3.0.1 on Wed Apr 10 13:30:28 2013 | http://epydoc.sourceforge.net |