Package lib :: Package dispersion :: Module m61b
[hide private]
[frames] | no frames]

Source Code for Module lib.dispersion.m61b

  1  ############################################################################### 
  2  #                                                                             # 
  3  # Copyright (C) 2009 Sebastien Morin                                          # 
  4  # Copyright (C) 2013-2014 Edward d'Auvergne                                   # 
  5  #                                                                             # 
  6  # This file is part of the program relax (http://www.nmr-relax.com).          # 
  7  #                                                                             # 
  8  # This program is free software: you can redistribute it and/or modify        # 
  9  # it under the terms of the GNU General Public License as published by        # 
 10  # the Free Software Foundation, either version 3 of the License, or           # 
 11  # (at your option) any later version.                                         # 
 12  #                                                                             # 
 13  # This program is distributed in the hope that it will be useful,             # 
 14  # but WITHOUT ANY WARRANTY; without even the implied warranty of              # 
 15  # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the               # 
 16  # GNU General Public License for more details.                                # 
 17  #                                                                             # 
 18  # You should have received a copy of the GNU General Public License           # 
 19  # along with this program.  If not, see <http://www.gnu.org/licenses/>.       # 
 20  #                                                                             # 
 21  ############################################################################### 
 22   
 23  # Module docstring. 
 24  """The Meiboom (1961) 2-site on-resonance skewed population R1rho U{M61 skew<http://wiki.nmr-relax.com/M61_skew>} model. 
 25   
 26  Description 
 27  =========== 
 28   
 29  This module is for the function, gradient and Hessian of the U{M61 skew<http://wiki.nmr-relax.com/M61_skew>} model. 
 30   
 31   
 32  References 
 33  ========== 
 34   
 35  The model is named after the reference: 
 36   
 37      - Meiboom S. (1961).  Nuclear magnetic resonance study of the proton transfer in water.  I{J. Chem. Phys.}, B{34}, 375-388.  (U{DOI: 10.1063/1.1700960<http://dx.doi.org/10.1063/1.1700960>}). 
 38   
 39   
 40  Equations 
 41  ========= 
 42   
 43  The equation used is:: 
 44   
 45                             pA^2.pB.delta_omega^2.kex 
 46      R1rho = R1rho' + -------------------------------------- , 
 47                       kex^2 + pA^2.delta_omega^2 + omega_1^2 
 48   
 49  where R1rho' is the R1rho value in the absence of exchange, kex is the chemical exchange rate constant, pA and pB are the populations of states A and B, delta_omega is the chemical shift difference between the two states, and omega_1 = omega_e is the effective field in the rotating frame. 
 50   
 51   
 52  Links 
 53  ===== 
 54   
 55  More information on the M61 skew model can be found in the: 
 56   
 57      - U{relax wiki<http://wiki.nmr-relax.com/M61_skew>}, 
 58      - U{relax manual<http://www.nmr-relax.com/manual/M61_skew_2_site_fast_exchange_R1_model.html>}, 
 59      - U{relaxation dispersion page of the relax website<http://www.nmr-relax.com/analyses/relaxation_dispersion.html#M61_skew>}. 
 60  """ 
 61   
 62  # Python module imports. 
 63  from numpy import abs, array, isfinite, min, sum 
 64   
65 -def r1rho_M61b(r1rho_prime=None, pA=None, dw=None, kex=None, spin_lock_fields2=None, back_calc=None, num_points=None):
66 """Calculate the R1rho values for the M61 skew model. 67 68 See the module docstring for details. 69 70 71 @keyword r1rho_prime: The R1rho_prime parameter value (R1rho with no exchange). 72 @type r1rho_prime: float 73 @keyword pA: The population of state A. 74 @type pA: float 75 @keyword dw: The chemical exchange difference between states A and B in rad/s. 76 @type dw: float 77 @keyword kex: The kex parameter value (the exchange rate in rad/s). 78 @type kex: float 79 @keyword spin_lock_fields2: The R1rho spin-lock field strengths squared (in rad^2.s^-2). 80 @type spin_lock_fields2: numpy rank-1 float array 81 @keyword back_calc: The array for holding the back calculated R1rho values. Each element corresponds to the combination of spin lock field. 82 @type back_calc: numpy rank-1 float array 83 @keyword num_points: The number of points on the dispersion curve, equal to the length of the spin_lock_fields and back_calc arguments. 84 @type num_points: int 85 """ 86 87 # The B population. 88 pB = 1.0 - pA 89 90 # Repetitive calculations (to speed up calculations). 91 pA2dw2 = pA**2 * dw**2 92 kex2_pA2dw2 = kex**2 + pA2dw2 93 94 # The numerator. 95 numer = pA2dw2 * pB * kex 96 97 # Catch zeros (to avoid pointless mathematical operations). 98 # This will result in no exchange, returning flat lines. 99 if numer == 0.0: 100 back_calc[:] = array([r1rho_prime]*num_points) 101 return 102 103 # Denominator. 104 denom = kex2_pA2dw2 + spin_lock_fields2 105 106 # Catch math domain error of dividing with 0. 107 # This is when denom=0. 108 if min(abs(denom)) == 0: 109 back_calc[:] = array([1e100]*num_points) 110 return 111 112 113 # R1rho calculation. 114 R1rho = r1rho_prime + numer / denom 115 116 # Catch errors, taking a sum over array is the fastest way to check for 117 # +/- inf (infinity) and nan (not a number). 118 if not isfinite(sum(R1rho)): 119 R1rho = array([1e100]*num_points) 120 121 back_calc[:] = R1rho
122