Package lib :: Package dispersion :: Module tap03
[hide private]
[frames] | no frames]

Source Code for Module lib.dispersion.tap03

  1  ############################################################################### 
  2  #                                                                             # 
  3  # Copyright (C) 2000-2001 Nikolai Skrynnikov                                  # 
  4  # Copyright (C) 2000-2001 Martin Tollinger                                    # 
  5  # Copyright (C) 2013-2014 Edward d'Auvergne                                   # 
  6  #                                                                             # 
  7  # This file is part of the program relax (http://www.nmr-relax.com).          # 
  8  #                                                                             # 
  9  # This program is free software: you can redistribute it and/or modify        # 
 10  # it under the terms of the GNU General Public License as published by        # 
 11  # the Free Software Foundation, either version 3 of the License, or           # 
 12  # (at your option) any later version.                                         # 
 13  #                                                                             # 
 14  # This program is distributed in the hope that it will be useful,             # 
 15  # but WITHOUT ANY WARRANTY without even the implied warranty of               # 
 16  # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the               # 
 17  # GNU General Public License for more details.                                # 
 18  #                                                                             # 
 19  # You should have received a copy of the GNU General Public License           # 
 20  # along with this program.  If not, see <http://www.gnu.org/licenses/>.       # 
 21  #                                                                             # 
 22  ############################################################################### 
 23   
 24  # Module docstring. 
 25  """The Trott, Abergel and Palmer (2003) off-resonance 2-site exchange R1rho U{TAP03<http://wiki.nmr-relax.com/TAP03>} model. 
 26   
 27  Description 
 28  =========== 
 29   
 30  This module is for the function, gradient and Hessian of the U{TAP03<http://wiki.nmr-relax.com/TAP03>} model. 
 31   
 32   
 33  References 
 34  ========== 
 35   
 36  The model is named after the reference: 
 37   
 38      - Trott, O., Abergel, D., and Palmer, A. (2003).  An average-magnetization analysis of R1rho relaxation outside of the fast exchange.  I{Mol. Phys.}, B{101}, 753-763.  (U{DOI: 10.1080/0026897021000054826<http://dx.doi.org/10.1080/0026897021000054826>}). 
 39   
 40   
 41  Code origin 
 42  =========== 
 43   
 44  The code was copied from the U{TP02<http://wiki.nmr-relax.com/TP02>} model (via the U{MP05<http://wiki.nmr-relax.com/MP05>} model), hence it originates as the funTrottPalmer.m Matlab file from the sim_all.tar file attached to task #7712 (U{https://web.archive.org/web/https://gna.org/task/?7712}).  This is code from Nikolai Skrynnikov and Martin Tollinger. 
 45   
 46  Links to the copyright licensing agreements from all authors are: 
 47   
 48      - Nikolai Skrynnikov, U{http://article.gmane.org/gmane.science.nmr.relax.devel/4279}, 
 49      - Martin Tollinger, U{http://article.gmane.org/gmane.science.nmr.relax.devel/4276}. 
 50   
 51   
 52  Links 
 53  ===== 
 54   
 55  More information on the TAP03 model can be found in the: 
 56   
 57      - U{relax wiki<http://wiki.nmr-relax.com/TAP03>}, 
 58      - U{relax manual<http://www.nmr-relax.com/manual/TAP03_2_site_exchange_R1_model.html>}, 
 59      - U{relaxation dispersion page of the relax website<http://www.nmr-relax.com/analyses/relaxation_dispersion.html#TAP03>}. 
 60  """ 
 61   
 62  # Python module imports. 
 63  from numpy import arctan2, array, isfinite, min, sin, sqrt, sum 
 64   
 65   
66 -def r1rho_TAP03(r1rho_prime=None, omega=None, offset=None, pA=None, pB=None, dw=None, kex=None, R1=0.0, spin_lock_fields=None, spin_lock_fields2=None, back_calc=None, num_points=None):
67 """Calculate the R1rho' values for the TP02 model. 68 69 See the module docstring for details. This is the Trott, Abergel and Palmer (2003) equation. 70 71 72 @keyword r1rho_prime: The R1rho_prime parameter value (R1rho with no exchange). 73 @type r1rho_prime: float 74 @keyword omega: The chemical shift for the spin in rad/s. 75 @type omega: float 76 @keyword offset: The spin-lock offsets for the data. 77 @type offset: numpy rank-1 float array 78 @keyword pA: The population of state A. 79 @type pA: float 80 @keyword pB: The population of state B. 81 @type pB: float 82 @keyword dw: The chemical exchange difference between states A and B in rad/s. 83 @type dw: float 84 @keyword kex: The kex parameter value (the exchange rate in rad/s). 85 @type kex: float 86 @keyword R1: The R1 relaxation rate. 87 @type R1: float 88 @keyword spin_lock_fields: The R1rho spin-lock field strengths (in rad.s^-1). 89 @type spin_lock_fields: numpy rank-1 float array 90 @keyword spin_lock_fields2: The R1rho spin-lock field strengths squared (in rad^2.s^-2). This is for speed. 91 @type spin_lock_fields2: numpy rank-1 float array 92 @keyword back_calc: The array for holding the back calculated R1rho values. Each element corresponds to the combination of offset and spin lock field. 93 @type back_calc: numpy rank-1 float array 94 @keyword num_points: The number of points on the dispersion curve, equal to the length of the spin_lock_fields and back_calc arguments. 95 @type num_points: int 96 """ 97 98 # Repetitive calculations (to speed up calculations). 99 Wa = omega # Larmor frequency [s^-1]. 100 Wb = omega + dw # Larmor frequency [s^-1]. 101 kex2 = kex**2 102 W = pA*Wa + pB*Wb # Pop-averaged Larmor frequency [s^-1]. 103 104 # The numerator. 105 phi_ex = pA * pB * dw**2 106 numer = phi_ex * kex 107 108 # The factors. 109 da = Wa - offset # Offset of spin-lock from A. 110 db = Wb - offset # Offset of spin-lock from B. 111 d = W - offset # Offset of spin-lock from pop-average. 112 113 # The gamma factor. 114 sigma = pB*da + pA*db 115 sigma2 = sigma**2 116 117 gamma = 1.0 + phi_ex*(sigma2 - kex2 + spin_lock_fields2) / (sigma2 + kex2 + spin_lock_fields2)**2 118 119 # Bad gamma. 120 if min(gamma) < 0.0: 121 back_calc[:] = array([1e100]*num_points) 122 return 123 124 # Special omega values. 125 waeff2 = gamma*spin_lock_fields2 + da**2 # Effective field at A. 126 wbeff2 = gamma*spin_lock_fields2 + db**2 # Effective field at B. 127 weff2 = gamma*spin_lock_fields2 + d**2 # Effective field at pop-average. 128 129 # The rotating frame flip angle. 130 theta = arctan2(spin_lock_fields, d) 131 hat_theta = arctan2(sqrt(gamma)*spin_lock_fields, d) 132 133 # Repetitive calculations (to speed up calculations). 134 sin_theta2 = sin(theta)**2 135 hat_sin_theta2 = sin(hat_theta)**2 136 R1_cos_theta2 = R1 * (1.0 - sin_theta2) 137 R1rho_prime_sin_theta2 = r1rho_prime * sin_theta2 138 139 # Catch zeros (to avoid pointless mathematical operations). 140 # This will result in no exchange, returning flat lines. 141 if numer == 0.0: 142 back_calc[:] = R1_cos_theta2 + R1rho_prime_sin_theta2 143 return 144 145 # Denominator. 146 denom = waeff2*wbeff2/weff2 + kex2 - 2.0*hat_sin_theta2*phi_ex + (1.0 - gamma)*spin_lock_fields2 147 148 # R1rho calculation. 149 R1rho = R1_cos_theta2 + R1rho_prime_sin_theta2 + hat_sin_theta2 * numer / denom / gamma 150 151 # Catch errors, taking a sum over array is the fastest way to check for 152 # +/- inf (infinity) and nan (not a number). 153 if not isfinite(sum(R1rho)): 154 R1rho = array([1e100]*num_points) 155 156 back_calc[:] = R1rho
157